DOI QR코드

DOI QR Code

Gas Turbine Combustor Performance Characteristics with Swirl Stabilized Flame and Coanda Stabilized Flame

스월 안정화/코안다 안정화 화염을 적용한 가스터빈 연소기 연소성능 특성에 대한 시험연구

  • Hyungmo Kim (Aeropropulsion Research Division, Korea Aerospace Research Institute) ;
  • Jaiho Kim (Aeropropulsion Research Division, Korea Aerospace Research Institute) ;
  • Sangyoon Lee (Aeropropulsion Research Division, Korea Aerospace Research Institute) ;
  • Dong-ho Rhee (Aeropropulsion Research Division, Korea Aerospace Research Institute) ;
  • Jupyoung Kim (Aerospace R&D Center, Hanwha Aerospace) ;
  • Shaun Kim (Aerospace R&D Center, Hanwha Aerospace) ;
  • Chulju Ahn (Aerospace R&D Center, Hanwha Aerospace) ;
  • Heeho Park (Aerospace R&D Center, Hanwha Aerospace) ;
  • Bokwon Lee (Defense Rapid Acquisition Technology Research Institute)
  • Received : 2023.01.19
  • Accepted : 2023.04.15
  • Published : 2023.04.30

Abstract

This study represents the results of the combustor performance test evaluation on the single-sector combustor and annular combustor of the combustor with the pre-filming air-blast fuel nozzle. Notably, it was found that the two different combustion patterns, Swirl-stabilized and Coanda-stabilized flames, were switched according to the fuel nozzle dome swirler-tip angle and its axial location, respectively, which is called 'Recess' in this paper. In the absence of Recess with specific angles, the flame was attached near the dome wall by the Coanda effect and effect on the combustor performance.

본 연구는 예비 액막 공기충돌형 연료노즐(이하, PAFN: Prefilming Airblast Fuel nozzle)을 갖는 연소기의 단일 섹터 연소기와 환형 연소기에 대하여 연소성능시험평가를 수행한 결과를 다루고 있다. 특히 PAFN의 돔 스월러 끝단 각도와 위치에 따라 스월 안정화 화염과 코안다 안정화 화염의 두 가지 다른 패턴의 연소형상이 전환됨을 확인하였다. 두 화염을 단일 화염 가시화를 위한 섹터 연소시험을 수행하여 화염구조의 특성을 이해하였으며 실제 사용될 환형 연소기 성능시험을 확보함으로써 코안다 화염의 가스터빈 연소기 적용 가능성을 알 수 있었다.

Keywords

Acknowledgement

본 연구는 방위산업기술지원센서 지원 하에 '복합형 회전익용 터보샤프트 엔진 핵심구성품개발'과제(UC190008D)의 일환으로 수행되었습니다.

References

  1. Lefebvre, A.H., Gas Turbine Combustion, Hemisphere Publishing Corporation, New York, N.Y., U.S.A., 1983.
  2. Haung, Y. and Yang, V., "Dynamics and stability of lean-premixed swirl-stabilized combustion," Progress in Energy and Combustion Science, Vol. 35, pp. 293-364, 2009. https://doi.org/10.1016/j.pecs.2009.01.002
  3. Winterfeld, G., Design of Gas Turbine Combustors, Academic Press Cambridge, M.A., U.S.A., 1984.
  4. Ahmed, N.A., Coanda Effect: Flow Phenomenon and Application, 1st ed., CRC Press, Boca Raton, F.L., U.S.A., 2021.
  5. Gil, Y.S., Jung, H.S. and Chung, S.H., "Premixed Flame Stabilization in an Axisymmetric Curved-Wall Jet," Combustion and Flame, Vol. 11, pp. 348-357, 1998. https://doi.org/10.1016/S0010-2180(97)00222-8
  6. Lewis, B. and Elbe, G. von, Combustion, flames, and explosion of gases, 3rd ed., Academic Press, Orlando, F.L., U.S.A., 1987.
  7. Vanierschot, M. and Van den Bulck, E., "Hysteresis in flow patterns in annular swirling jets," Experimental Thermal and Fluid Science, Vol. 31, pp. 513-524, 2009. https://doi.org/10.1016/j.expthermflusci.2006.06.001
  8. Castaneda V. and Valera-Medina, A., "Coanda flames for development of flat burners," Energy Procedia, Vol. 158, pp. 1885-1890, 2019. https://doi.org/10.1016/j.egypro.2019.01.436
  9. Dafsari, R.A., Kasabi, M.K., Kim, J. and Lee, J., "Effect of flare geometry and swirl ratio on the Coanda effect in unconfined spray of Pre-filming air-blast nozzle with triple swirler," 31st Annual Conference on Liquid Atomization and Spray Systems, North and South America, Madison, W.I., U.S.A., May 2021.
  10. Kim, J., Kim, S., Dafsari, R., Lee, J., Kim, H., Kim, J., Ahn, C., Park, H. and Lee, B., "Spray and Combustion Characteristics of Prefilming Airblast Nozzle," 62nd KOSCO Symposium, Jeju, Korea, Nov. 2021.