DOI QR코드

DOI QR Code

항공기용 가스터빈 엔진 연료시스템의 모델링 및 성능 분석

Modeling and Performance Analysis of the Fuel System in an Aircraft Gas Turbine Engine

  • Hyeon-Seok Shim (School of Mechanical Engineering, Changwon National University) ;
  • Donghyun Kim (Aerospace Technology Research Institute, Agency for Defense Development) ;
  • Gyongwon Ryu (Aerospace Technology Research Institute, Agency for Defense Development) ;
  • Youil Kim (Aerospace Technology Research Institute, Agency for Defense Development)
  • 투고 : 2022.12.26
  • 심사 : 2023.02.04
  • 발행 : 2023.04.30

초록

항공기용 가스터빈 엔진 연료시스템의 열 및 유동 특성을 해석하기 위해 1차원 네트워크 모델링을 수행하였다. 상용 시스템 해석 프로그램인 AMESim을 이용하여 연료의 승압을 위한 연료펌프 유닛 그리고 엔진 연소기로 유입되는 연료의 유량을 제어하는 연료조절장치의 구성요소를 모사하였으며, 오일 시스템의 열관리에 따른 온도 구현이 가능하도록 연료-오일 열교환기를 모사하였다. 구성요소의 모델링은 유입 신호 및 물성에 따른 구성요소의 정상 작동 여부를 확인함으로써 그 타당성을 검증하였다. 임무 조건에 따른 연료시스템의 물성 변화를 확인하였으며, 이에 따른 동력 및 온도 특성을 분석하였다.

Thermal and flow characteristics of the fuel system in an aircraft gas turbine engine were numerically studied by constructing a 1D network modeling. Using the commercial system analysis software AMESim, the fuel pumping unit and the fuel metering unit were modeled. The fuel-oil heat exchanger was also modeled to investigate the thermal effect of an oil system on the fuel temperature. The component modeling was verified by confirming whether the components work properly by examining the input signals and physical properties. Variations of properties with flight conditions were studied, then the shaft power and temperature were analyzed.

키워드

과제정보

이 연구는 2022년 정부의 재원으로 수행된 연구 결과임.

참고문헌

  1. Royce, Rolls, The jet engine-2nd edition, John Wiley & Sons, London, England, 2015.
  2. Park, I., Kim, J. and Min, S., "A Survey on the Health Management Technology for Aircraft Gas Turbine Engine," Journal of the Korean Society of Propulsion Engineers, Vol. 21, No. 5, pp. 108-120, 2017. https://doi.org/10.6108/KSPE.2017.21.5.108
  3. Wang, B., Zhao, H., Yu, L. and Ye, Z., "Study of Temperature Effect on Servovalve-Controlled Fuel Metering Unit," ASME Journal of Engineering for Gas Turbines and Power, Vol. 137, No. 6, p. 061503, 2015.
  4. Wang, B., Zhao, H. and Ye, Z., "A Co-modeling Method Based on Component Features for Mechatronic Devices in Aero-engines," International Journal of Turbo & Jet-engines, Vol. 34, No. 3, pp. 255-267, 2017. https://doi.org/10.1515/tjj-2016-0007
  5. Yuan, Y., Zhao, Z. and Zhang, T., "A mimicking technique of back pressure in the hardware-in-the-loop simulation of a fuel control unit," Simulation, Vol. 96, No. 4, pp. 375-385, 2020. https://doi.org/10.1177/0037549719873969
  6. Agh, S.M., Pirkandi, J., Mahmoodi, M. and Jahromi, M., "Optimum design, simulation and test of a new flow control valve with an electronic actuator for turbine engine fuel control system," Flow Measurement and Instrumentation, Vol. 65, pp. 65-77, 2019. https://doi.org/10.1016/j.flowmeasinst.2018.11.001
  7. Masuda, S., Shimizu, F., Fuchiwaki, M. and Tanaka, K., "Modelling and reducing fuel flow pulsation of a fuel-metering system during pump mode switching in a turbofan engine," IOP Conference Series: Earth and Environmental Science, Vol. 240, No. 5, p. 052030, 2019.
  8. Lamoureux, B., "Development of an Integrated Approach for PHM-Prognostics and Health Management: Application to a Turbofan Fuel System," Ph.D. dissertation, l'Ecole Nationale Superieure d'Arts et Metiers (ENSAM), Paris, France, 2014.
  9. Wang, K., Du, X., Sun, X.M. and Peng, K., "Fault simulation and diagnosis of the aero-engine fuel regulator," 37th Chinese Control Conference, Wuhan, China, pp. 5783-5789, July 2018.