DOI QR코드

DOI QR Code

정수처리장 내 미량오염물질 제어를 위한 산화제 주입량 결정에 관한 총설

Determination of oxidant dose for control of micropollutants in drinking water treatment plant: A review

  • 김민식 (전북대학교 환경공학과, 토양환경연구소) ;
  • 임정현 (전북대학교 환경공학과, 토양환경연구소)
  • Min Sik Kim (Department of Environmental Engineering, Soil Environment Research Center, Jeonbuk National University) ;
  • Junghyun Lim (Department of Environmental Engineering, Soil Environment Research Center, Jeonbuk National University)
  • 투고 : 2023.03.03
  • 심사 : 2023.04.03
  • 발행 : 2023.04.15

초록

The emergence of micropollutants in natural water sources due to the overuse of anthropogenic chemicals in industry and households has threatened the production of clean and safe tap water in drinking water treatment plants. Conventional physicochemical processes such as coagulation/flocculation followed by sand filtration are not effective for the control of micropollutants, whereas chemical oxidation processes (applying chlorine, permanganate, ozone, etc.) are known to be promising alternatives. Determining the optimum oxidant dose is important issue related to the production of disinfection by-products as well as unnecessary operating cost, and is made possible by simulations of target-micropollutant abatement based on kinetic model equation consisting of second-order rate constant (between the oxidant and the target) and oxidant exposure. However, the difficulty in determining oxidant exposure as a function of complex water quality parameters limits the field application of kinetic model equation. With respect to representative oxidants used in drinking water treatment plants, this article reviews two main approaches for determining oxidant exposure: i) direct measurement in situ and ii) prediction by empirical models based on key water quality parameters. In addition, we discussed research requirements to improve the predictive accuracy of the empirical models for oxidant exposure and to develop a rational algorithm to determine optimal oxidant dose by considering the priority of the target pollutants to be treated.

키워드

과제정보

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행되었습니다(NRF-2021R1F1A1064564).

참고문헌

  1. Amy, G., Siddiqui, M., Ozekin, K., Zhu, H.W., and Wang, C. (1998). Empirically based models for predicting chlorination and ozonation by-products: Trihalomethanes, haloacetic acids, chloral hydrate, and bromate, EPA report CX 819579.
  2. Bailey, N., Carrington, A., Lott, T.A., and Symons, M.C.R. (1960). Structure and reactivity of the oxyanions of transition metals. Part VIII. Activities and spectra of protonated oxyanions, J. Chem. Soc., 290-296.
  3. Bard, A.J., Parsons, R., and Jordan, J. (1985). Standard Potentials in Aqueous Solution. Marcel Dekker Inc., New York and Basel.
  4. Cha, D., Park, S., Kim, M.S., Kim, T., Hong, S.W., Cho, K.H., and Lee, C. (2020). Prediction of oxidant exposures and micropollutant abatement during ozonation using a machine learning method, Environ. Sci. Technol., 55(1), 709-718. https://doi.org/10.1021/acs.est.0c05836
  5. Colthurst, J.M., Singer, P.C. (1982). Removing trihalomethane precursors by permanganate oxidation and manganese dioxide adsorption, J. Am. Water Work. Assoc., 72(2), 78-83. https://doi.org/10.1002/j.1551-8833.1982.tb04853.x
  6. Crittenden, J.C., Trussell, R.R., Hand, D.W., Howe, K.J., Tchobanoglous, G. (2012). MWH Water treatment principles and design. 3rd ED., John Wiley & Sons, Inc., Hoboken, New Jersey.
  7. Elovitz, M.S. and von Gunten, U. (1999). Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept, Ozone Sci. Eng., 21(3), 239-260. https://doi.org/10.1080/01919519908547239
  8. Gemusse, S.L., Folle, N.M.T., da Costa Souza, A.T., Azevedo-Linhares, M., Neto, F.F., Ortolani-Machado, C.F., Garcia, J.R.E., Esquivel, L., da Silva, C.P., de Campos, S.X., de Castro Martins, C., de Oliveira Ribeiro, C.A. (2021). Micropollutants impair the survival of Oreochromis niloticus and threat local species from Iguacu River, Southern of Brazil, Environ. Toxicol. Pharmacol., 83, 103596.
  9. Hu, L., Martin, H.M., Strathmann, T.J. (2010). Oxidation kinetics of antibiotics during water treatment with potassium permanganate, Environ. Sci. Technol., 44(16), 6416-6422. https://doi.org/10.1021/es101331j
  10. Jeon, J.C., Jo, C.H., Kwon, S.B., Lee, K.H., Hwang, T.M., and Chung, Y. (2011). A case study on the automatic ozone dose control system based on the ozone decay rate in a full-scale advanced water treatment plant, Desalin. Water Treat., 33(1-3), 337-350. https://doi.org/10.5004/dwt.2011.2662
  11. Kaiser, H.-P., Koster, O., Gresch, M., Perisset, P.M.J., Jaggi, P., Salhi, E., and von Gunten, U. (2013). Process control for ozonation systems: A novel real-time approach, Ozone Sci. Eng., 35(3), 168-185. https://doi.org/10.1080/01919512.2013.772007
  12. Kim, M.S., Cha, D., Lee, K.M., Lee, H.J., Kim, T., and Lee, C. (2020). Modeling of ozone decomposition, oxidant exposure, and the abatement of micropollutants during ozonation processes, Water Res., 169, 115230.
  13. Kim, M.S., Lee, C., and Kim, J.H. (2021). Occurrence of unknown reactive species in UV/H2O2 system leading to false interpretation of hydroxyl radical probe reactions, Water Res., 201, 117338.
  14. Kim, M.S., Lee, H.J., Lee, K.M., Seo, J., and Lee, C. (2018). Oxidation of microcystins by permanganate: pH and temperature-dependent kinetics, effect of DOM characteristics, and oxidation mechanism revisited, Environ. Sci. Technol., 52(12), 7054-7063. https://doi.org/10.1021/acs.est.8b01447
  15. Lee, M., Zimmermann-Steffens, S.G., Arey, J.S., Fenner, K., and von Gunten, U. (2015). Development of prediction models for the reactivity of organic compounds with ozone in aqueous solution by quantum chemical calculations: the role of delocalized and localized molecular orbitals, Environ. Sci. Technol., 49(16), 9925-9935. https://doi.org/10.1021/acs.est.5b00902
  16. Lee, Y. and von Gunten, U. (2012). Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment, Water Res., 46(19), 6177-6195.
  17. Lee, Y. and von Gunten, U. (2016). Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: reaction kinetics, transformation products, and changes of biological effects, Environ. Sci.: Water Res. Technol., 2, 421-442. https://doi.org/10.1039/C6EW00025H
  18. Liu, C., Qiang, Z., Adams, C., Tian, F., Zhang, T. (2009). Kinetics and mechanism for degradation of dichlorvos by permanganate in drinking water treatment, Water Res., 34(14), 3435-3442.
  19. Luo, Y., Guo, W., Ngo, H.H., Nghiem, L.D., Hai, F.I., Zhang, J., Liang, S., and Wang, X.C. (2014). A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment, Sci. Tot. Environ., 473-474, 619-641. https://doi.org/10.1016/j.scitotenv.2013.12.065
  20. Minakata, D., Li, K. and Westerhoff, J.C. (2009). Development of a group contribution method to predict aqueous phase hydroxyl radical (HO·) reaction rate constants, Environ. Sci. Technol., 43(16), 6220-6227. https://doi.org/10.1021/es900956c
  21. Neta, P. and Dorfman, L.M. (1968). Pulse radiolysis studies. XIII. Rate constants for the reaction of hydroxyl radicals with aromatic compounds in aqueous solutions, Adv. Chem., 81, 222-230. https://doi.org/10.1021/ba-1968-0081.ch015
  22. Oh, H.J., Kim, W.J., Choi, J.S., Gee, C.S., Hwang, T.M., Kang, J.G., and Kang, J.W. (2003). Optimization and control of ozonation plant using raw water characterization method, Ozone Sci. Eng., 25(5), 383-392. https://doi.org/10.1080/01919510390481702
  23. Qualls, R.G., and Johnson, J.D. (1983). Kinetics of the short-term consumption of chlorine by fulvic acid, Environ. Sci. Technol., 17(11), 692-698. https://doi.org/10.1021/es00117a013
  24. Rajasekharan, V.V., Clark, B.N., Boonsalee, S., and Switzer, J.A. (2007). Electrochemistry of free chlorine and monochloramine and its relevance to the presence of Pb in drinking water, Environ. Sci. Technol., 41(12), 4252-4257. https://doi.org/10.1021/es062922t
  25. Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., von Gunten, U., and Wehrli, B. (2006). The challenge of micropollutants in aquatic systems, Sci., 313(5790), 1072-1077. https://doi.org/10.1126/science.1127291
  26. Selleck, R.E., Saunier, B.M., and Collins, H.F. (1978). Kinetics of bacterial deactivation with chlorine, J. Environ. Eng. Div., 104(6), 1197-1212. https://doi.org/10.1061/JEEGAV.0000842
  27. Siddiqui, M., Amy, G., Ozekin, and K., Westerhoff, P. (1994). Empirically and theoretically-based models for predicting brominated ozonated by-products, Ozone Sci. Eng., 16(2), 157-178. https://doi.org/10.1080/01919519408552419
  28. Sohn, J., Amy, G., Cho, J., Lee, Y., and Yoon, Y. (2004). Disinfection decay and disinfection by-products formation model development: chlorination and ozonation by-products, Water Res., 38(10), 2461-2478. https://doi.org/10.1016/j.watres.2004.03.009
  29. Yang, Y., Ok, Y.S., Kim, K.H., Kwon, E.E., and Tsang, Y.F. (2017). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plant: A review, Sci. Tot. Environ., 596-597, 303-320. https://doi.org/10.1016/j.scitotenv.2017.04.102