DOI QR코드

DOI QR Code

Overview on hydrometallurgy processes for effective use of water resource in spent lithium-ion batteries recycling

효율적 수자원 활용을 위한 폐리튬이온배터리 재활용 습식 제련 기술 연구 동향

  • Dayoung Ahn (Department of Environmental Engineering and Institute of Energy/Environment Convergence Technologies, Kongju National University) ;
  • Seonghwan Kim (Department of Environmental Engineering and Institute of Energy/Environment Convergence Technologies, Kongju National University) ;
  • Choonsoo Kim (Department of Environmental Engineering and Institute of Energy/Environment Convergence Technologies, Kongju National University)
  • 안다영 (공주대학교 환경공학과 및 에너지환경융합연구소) ;
  • 김성환 (공주대학교 환경공학과 및 에너지환경융합연구소) ;
  • 김춘수 (공주대학교 환경공학과 및 에너지환경융합연구소)
  • Received : 2023.03.03
  • Accepted : 2023.03.31
  • Published : 2023.04.15

Abstract

With a rapid expansion in electric vehicles, a huge amount of the spent Li-ion batteries (LIBs) could be discharged in near future. And thus, the proper handling of the spent LIBs is essential to sustainable development in the industry of electrical vehicles. Among various approaches such as pyrometallurgy, hydrometallurgy, and direct recycling, the hydrometallurgical manner has gained interest in recycling the spent LIBs due to its high effectiveness in recycling raw materials (e.g., lithium, nickel, cobalt, and manganese). However, the hydrometallurgical process not only requires the use of large amounts of acids and water resources but also produces toxic gases and wastewater leading to environmental and economic problems, considering potential economic and environmental problems. Thus, this review aims to provide an overview of conventional and state-of-the-art hydrometallurgical processes to recover valuable metals from spent LIBs. First, we briefly introduce the basic principle and materials of LIBs. Then, we briefly introduce the operations and pros-and cons- of hydrometallurgical processes. Finally, this review proposes future research directions in hydrometallurgy, and its potential opportunities in the fundamental and practical challenges regarding its deployment going forward.

Keywords

Acknowledgement

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업입니다(NRF-2021R1I1A3040360). 이 논문은 환경부의 폐자원에너지화 전문인력 양성사업으로 지원되었습니다.

References

  1. Andersson, J. (2017). Lifetime estimation of lithium-ion batteries for stationary energy storage system. Generic., Master's Thesis, KTH Royal Institute of Technology, Stockholm, Sweden, KE202X.
  2. Bahgat, M., Farghaly, F., Basir, S.A. and Fouad, O. (2007). Synthesis, characterization and magnetic properties of microcrystalline lithium cobalt ferrite from spent lithium-ion batteries, J. Mater. Process Technol. 183, 117-121. https://doi.org/10.1016/j.jmatprotec.2006.10.005
  3. Bertuol, D.A., Machado, C.M., Silva, M.L., Calgaro, C.O., Dotto, G.L. and Tanabe, E.H. (2016). Recovery of cobalt from spent lithium-ion batteries using super-critical carbon dioxide extraction, Waste Manage., 51, 245-251. https://doi.org/10.1016/j.wasman.2016.03.009
  4. Buchmann, I. (2015). Battery University., BU-301a: Types of Battery Cells., https://batteryuniversity.com/article/bu-301a-types-of-battery-cells (February 25, 2023).
  5. Castillo, S., Ansart, F., Laberty-Robert, C. and Portal, J. (2002). Advances in the recovering of spent lithium battery compounds, J. Power Sour., 112, 247-254. https://doi.org/10.1016/S0378-7753(02)00361-0
  6. Chen, W.S. and Ho, H.J. (2018). Leaching behavior analysis of valuable metals from lithium-ion batteries cathode material, Key Eng. Mater. 419-426.
  7. Chen, X., Chen, Y., Zhou, T., Liu, D., Hu, H. and Fan, S. (2015). Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries, Waste Manage., 38, 349-356. https://doi.org/10.1016/j.wasman.2014.12.023
  8. Chen, X., Luo, C., Zhang, J., Kong, J. and Zhou, T. (2015). Sustainable recovery of metals from spent lithium-ion batteries: a green process, ACS Sustain. Chem. Eng., 3, 3104-3113. https://doi.org/10.1021/acssuschemeng.5b01000
  9. Chen, X., Ma, H., Luo, C. and Zhou, T. (2017). Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid, J. Hazard. Mater., 326, 77-86. https://doi.org/10.1016/j.jhazmat.2016.12.021
  10. Cheng, Q., Chirdon, W.M., Lin, M., Mishra, K. and Zhou, X. (2019). Characterization, modeling, and optimization of a single-step process for leaching metallic ions from LiNi1/3Co1/3Mn1/3O2 cathodes for the recycling of spent lithium-ion batteries, Hydrometall., 185, 1-11. https://doi.org/10.1016/j.hydromet.2019.01.003
  11. Choubey, P.K., Chung, K.S., Kim, M.S., Lee, J.C. and Srivastava, R.R. (2017). Advance review on the exploitation of the prominent energy-storage element Lithium. Part II: From sea water and spent lithium ion batteries (LIBs), Miner. Eng., 110, 104-121. https://doi.org/10.1016/j.mineng.2017.04.008
  12. Costa, C.M., Barbosa, J.C., Goncalves, R., Castro, H., Del Campo, F. and Lancer-os-Mendez, S. (2021). Recycling and environmental issues of lithium-ion bat-teries: Advances, challenges and opportunities, Energy Stor. Mater., 37, 433-465.
  13. Dorella, G. and Mansur, M.B. (2007). A study of the separation of cobalt from spent Li-ion battery residues, J. Power Sour., 170, 210-215. https://doi.org/10.1016/j.jpowsour.2007.04.025
  14. Dyana, Z.N.F., Perdana, I. and Prasetya, A. (2020). "Kinetics study on lithium leaching of spent lithium iron phosphate batteries in low concentration of sulfuric acid", Prosiding Seminar Nasional Teknik Kimia Kejuangan, 14-15 July, 2020, Yogyakarta, Indonesia.
  15. Fan, X., Song, C., Lu, X., Shi, Y., Yang, S., Zheng, F., Huang, Y., Liu, K., Wang, H. and Li, Q. (2021). Separation and recovery of valuable metals from spent lithi-um-ion batteries via concentrated sulfuric acid leaching and regeneration of LiNi1/3Co1/3Mn1/3O2, J. Alloys Compd., 863, 158775.
  16. Ferreira, D.A., Prados, L.M.Z., Majuste, D. and Mansur, M.B. (2009). Hydrometallurgical separation of aluminium, cobalt, copper and lithium from spent Li-ion batteries, J. Power Sour. 187, 238-246. https://doi.org/10.1016/j.jpowsour.2008.10.077
  17. Gao, W., Zhang, X., Zheng, X., Lin, X., Cao, H., Zhang, Y. and Sun, Z. (2017). Lithium carbonate recovery from cathode scrap of spent lithium-ion battery: a closed-loop process, Environ. Sci. Technol., 51, 1662-1669. https://doi.org/10.1021/acs.est.6b03320
  18. Gerold, E., Lerchbammer, R. and Antrekowitsch, H. (2022). Parameter Study on the Recycling of LFP Cathode Material Using Hydrometallurgical Methods, Metals, 12, 1706.
  19. Golmohammadzadeh, R., Rashchi, F. and Vahidi, E. (2017). Recovery of lithium and cobalt from spent lithium-ion batteries using organic acids: Process optimization and kinetic aspects, Waste Manage., 64, 244-254. https://doi.org/10.1016/j.wasman.2017.03.037
  20. Golubkov, A.W., Fuchs, D., Wagner, J., Wiltsche, H., Stangl, C., Fauler, G., Voitic, G., Thaler, A. and Hacker, V. (2014). Thermal-runaway experiments on consumer Li-ion batteries with metal-oxide and olivin-type cathodes, RSC Adv. 4, 3633-3642.
  21. Guo, Y., Li, F., Zhu, H., Li, G., Huang, J. and He, W. (2016). Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl), Waste Manage., 51, 227-233. https://doi.org/10.1016/j.wasman.2015.11.036
  22. Guzolu, J.S., Gharabaghi, M., Mobin, M. and Alilo, H. (2017). Extraction of Li and Co from Li-ion batteries by chemical methods, J. Inst. Eng.,(India): Series D 98, 43-48. https://doi.org/10.1007/s40033-016-0114-z
  23. Harper, G., Sommerville, R., Kendrick, E., Driscoll, L., Slater, P., Stolkin, R., Wal-ton, A., Christensen, P., Heidrich, O. and Lambert, S. (2019). Recycling lithium-ion batteries from electric vehicles, Nature, 575, 75-86. https://doi.org/10.1038/s41586-019-1682-5
  24. He, L.P., Sun, S.Y., Mu, Y.Y., Song, X.-F. and Yu, J.G. (2017). Recovery of lithium, nickel, cobalt, and manganese from spent lithium-ion batteries using L-tartaric acid as a leachant, ACS Sustain. Chem. Eng., 5, 714-721. https://doi.org/10.1021/acssuschemeng.6b02056
  25. Higuchi, A., Ankei, N., Nishihama, S. and Yoshizuka, K. (2016). Selective recovery of lithium from cathode materials of spent lithium ion battery, Jom, 68, 2624-2631. https://doi.org/10.1007/s11837-016-2027-6
  26. Horeh, N.B., Mousavi, S. and Shojaosadati, S. (2016). Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus niger, J. Power Sour., 320, 257-266. https://doi.org/10.1016/j.jpowsour.2016.04.104
  27. Hu, J., Zhang, J., Li, H., Chen, Y. and Wang, C. (2017). A promising approach for the recovery of high value-added metals from spent lithium-ion batteries, J. Power Sour., 351, 192-199. https://doi.org/10.1016/j.jpowsour.2017.03.093
  28. Huang, Y., Han, G., Liu, J., Chai, W., Wang, W., Yang, S. and Su, S. (2016). A stepwise recovery of metals from hybrid cathodes of spent Li-ion batteries with leaching-flotation-precipitation process, J. Power Sour., 325, 555-564. https://doi.org/10.1016/j.jpowsour.2016.06.072
  29. Innocenzi, V., De Michelis, I. and Veglio, F. (2017). Design and construction of an industrial mobile plant for WEEE treatment: Investigation on the treatment of fluorescent powders and economic evaluation compared to other e-wastes, J. Taiwan Inst. Chem. Eng., 80, 769-778. https://doi.org/10.1016/j.jtice.2017.09.019
  30. Jha, M.K., Kumari, A., Jha, A.K., Kumar, V., Hait, J. and Pandey, B.D. (2013). Recovery of lithium and cobalt from waste lithium ion batteries of mobile phone, Waste Manag., 33, 1890-1897. https://doi.org/10.1016/j.wasman.2013.05.008
  31. Joo, S.-H., Shin, D., Oh, C., Wang, J.P. and Shin, S.M. (2016). Extraction of manganese by alkyl monocarboxylic acid in a mixed extractant from a leaching solution of spent lithium-ion battery ternary cathodic material, J. Power Sour., 305, 175-181. https://doi.org/10.1016/j.jpowsour.2015.11.039
  32. Joulie, M., Laucournet, R. and Billy, E. (2014). Hydrometallurgical process for the recovery of high value metals from spent lithium nickel cobalt aluminum oxide based lithium-ion batteries, J. Power Sour., 247, 551-555. https://doi.org/10.1016/j.jpowsour.2013.08.128
  33. Jung, J.C.Y., Sui, P.C. and Zhang, J. (2021). A review of recycling spent lithi-um-ion battery cathode materials using hydrometallurgical treatments, J. Energy Storage, 35, 102217.
  34. Kang, J., Senanayake, G., Sohn, J. and Shin, S.M. (2010). Recovery of cobalt sul-fate from spent lithium ion batteries by reductive leaching and solvent extraction with Cyanex 272, Hydrometall., 100, 168-171. https://doi.org/10.1016/j.hydromet.2009.10.010
  35. Kaya, M. (2022). State-of-the-art lithium-ion battery recycling technologies, Circ. Econ., 1, 100015.
  36. Kim, D.S., Sohn, J.S., Lee, C.K., Lee, J.H., Han, K.S. and Lee, Y.I. (2004). Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries, J. Power Sour., 132, 145-149. https://doi.org/10.1016/j.jpowsour.2003.09.046
  37. Kim, S., Yang, D., Rhee, K. and Sohn, J. (2014). Recycling process of spent bat-tery modules in used hybrid electric vehicles using physical/chemical treatments, Res. Chem. Intermed., 40, 2447-2456. https://doi.org/10.1007/s11164-014-1653-2
  38. Ku, H., Jung, Y., Jo, M., Park, S., Kim, S., Yang, D., Rhee, K., An, E.M., Sohn, J. and Kwon, K. (2016). Recycling of spent lithium-ion battery cathode materials by ammoniacal leaching, J. Hazard. Mater., 313, 138-146. https://doi.org/10.1016/j.jhazmat.2016.03.062
  39. Kumar, J., Shen, X., Li, B., Liu, H. and Zhao, J. (2020). Selective recovery of Li and FePO4 from spent LiFePO4 cathode scraps by organic acids and the proper-ties of the regenerated LiFePO4, Waste Manag., 113, 32-40. https://doi.org/10.1016/j.wasman.2020.05.046
  40. Lee, C.K. and Rhee, K.I. (2002). Preparation of LiCoO2 from spent lithium-ion batteries., J. Power Sour., 109(1), 17-21. https://doi.org/10.1016/S0378-7753(02)00037-X
  41. Lee, C.K. and Rhee, K.I. (2003). Reductive leaching of cathodic active materials from lithium ion battery wastes, Hydrometall., 68, 5-10. https://doi.org/10.1016/S0304-386X(02)00167-6
  42. Li, H., Xing, S., Liu, Y., Li, F., Guo, H. and Kuang, G. (2017). Recovery of lithium, iron, and phosphorus from spent LiFePO4 batteries using stoichiometric sulfuric acid leaching system, ACS Sustain. Chem. Eng., 5, 8017-8024. https://doi.org/10.1021/acssuschemeng.7b01594
  43. Li, J., Shi, P., Wang, Z., Chen, Y. and Chang, C.C. (2009). A combined recovery process of metals in spent lithium-ion batteries, Chemosphere, 77, 1132-1136. https://doi.org/10.1016/j.chemosphere.2009.08.040
  44. Li, J., Wang, G. and Xu, Z. (2016). Environmentally-friendly oxygen-free roasting/wet magnetic separation technology for in situ recycling cobalt, lithium carbonate and graphite from spent LiCoO2/graphite lithium batteries, J. Hazard. Mater., 302, 97-104. https://doi.org/10.1016/j.jhazmat.2015.09.050
  45. Li, J., Wang, G. and Xu, Z. (2016). Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries, Waste Manag., 52, 221-227. https://doi.org/10.1016/j.wasman.2016.03.011
  46. Li, L., Bian, Y., Zhang, X., Guan, Y., Fan, E., Wu, F. and Chen, R. (2018). Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching, Waste Manag., 71, 362-371. https://doi.org/10.1016/j.wasman.2017.10.028
  47. Li, L., Bian, Y., Zhang, X., Xue, Q., Fan, E., Wu, F. and Chen, R. (2018). Economical recycling process for spent lithium-ion batteries and macro-and micro-scale mechanistic study, J. Power Sour., 377, 70-79. https://doi.org/10.1016/j.jpowsour.2017.12.006
  48. Li, L., Chen, R., Sun, F., Wu, F. and Liu, J. (2011). Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process, Hydrometall. 108, 220-225. https://doi.org/10.1016/j.hydromet.2011.04.013
  49. Li, L., Fan, E., Guan, Y., Zhang, X., Xue, Q., Wei, L., Wu, F. and Chen, R. (2017). Sustainable recovery of cathode materials from spent lithium-ion batteries using lactic acid leaching system, ACS Sustain. Chem. Eng., 5, 5224-5233. https://doi.org/10.1021/acssuschemeng.7b00571
  50. Li, L., Lu, J., Zhai, L., Zhang, X., Curtiss, L., Jin, Y., Wu, F., Chen, R. and Amine, K. (2018). A facile recovery process for cathodes from spent lithium iron phosphate batteries by using oxalic acid, CSEE J. Power Energy Syst., 4, 219-225. https://doi.org/10.17775/CSEEJPES.2016.01880
  51. Li, L., Qu, W., Zhang, X., Lu, J., Chen, R., Wu, F. and Amine, K. (2015). Succinic acid-based leaching system: A sustainable process for recovery of valuable metals from spent Li-ion batteries, J. Power Sour., 282, 544-551. https://doi.org/10.1016/j.jpowsour.2015.02.073
  52. Liu, C., Lin, J., Cao, H., Zhang, Y. and Sun, Z. (2019). Recycling of spent lithium-ion batteries in view of lithium recovery: A critical review, J. Clean. Prod., 228, 801-813. https://doi.org/10.1016/j.jclepro.2019.04.304
  53. Liu, T., Chen, J., Li, H. and Li, K. (2020). An integrated process for the separation and recovery of valuable metals from the spent LiNi0.5Co0.2Mn0.3O2 cathode materials, Sep. Purif. Technol., 245, 116869.
  54. Lou, W.B., Zhang, Y., Zhang, Y., Zheng, S.L., Pei, S., Wang, X.J., Li, J.Z., Shan, Q., Zhang, Y. and Wenzel, M. (2021). Leaching performance of Al-bearing spent LiFePO4 cathode powder in H2SO4 aqueous solution, Trans. Nonferrous Metal. Soc., 31, 817-831. https://doi.org/10.1016/S1003-6326(21)65541-3
  55. Lv, W., Wang, Z., Cao, H., Zheng, X., Jin, W., Zhang, Y. and Sun, Z. (2018). A sustainable process for metal recycling from spent lithium-ion batteries using ammonium chloride, Waste Manag., 79, 545-553. https://doi.org/10.1016/j.wasman.2018.08.027
  56. Ma, L., Xi, X., Zhang, Z., Huang, Z. and Chen, J. (2017). Hydrometallurgical treatment for mixed waste battery material. IOP Publishing, 012024.
  57. Meshram, P., Mishra, A. and Sahu, R. (2020). Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids-A review, Chemosphere, 242, 125291.
  58. Meshram, P., Pandey, B. and Mankhand, T. (2015). Hydrometallurgical processing of spent lithium ion batteries (LIBs) in the presence of a reducing agent with emphasis on kinetics of leaching, Chem. Eng., J. 281, 418-427. https://doi.org/10.1016/j.cej.2015.06.071
  59. Meshram, P., Pandey, B. and Mankhand, T. (2015). Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects, Waste Manag., 45, 306-313. https://doi.org/10.1016/j.wasman.2015.05.027
  60. Meshram, P., Pandey, B.D., Mankhand, T.R. and Deveci, H. (2016). Acid baking of spent lithium ion batteries for selective recovery of major metals: a two-step process, J. Ind. Eng. Chem., 43, 117-126. https://doi.org/10.1016/j.jiec.2016.07.056
  61. Meshram, P., Pandey, B.D., Mankhand, T.R. and Deveci, H. (2016). Comparision of different reductants in leaching of spent lithium ion batteries, Jom 68, 2613-2623. https://doi.org/10.1007/s11837-016-2032-9
  62. Nayaka, G., Pai, K., Santhosh, G. and Manjanna, J. (2016). Dissolution of cathode active material of spent Li-ion batteries using tartaric acid and ascorbic acid mixture to recover Co., Hydrometall., 161, 54-57. https://doi.org/10.1016/j.hydromet.2016.01.026
  63. Nayaka, G., Pai, K., Santhosh, G. and Manjanna, J. (2016). Recovery of cobalt as cobalt oxalate from spent lithium ion batteries by using glycine as leaching agent., J. Environ. Chem. Eng. 4, 2378-2383. https://doi.org/10.1016/j.jece.2016.04.016
  64. Nayaka, G.P., Pai, K.V., Manjanna, J. and Keny, S.J. (2016). Use of mild organic acid reagents to recover the Co and Li from spent Li-ion batteries, Waste manage., 51, 234-238. https://doi.org/10.1016/j.wasman.2015.12.008
  65. Pagnanelli, F., Moscardini, E., Granata, G., Cerbelli, S., Agosta, L., Fieramosca, A. and Toro, L. (2014). Acid reducing leaching of cathodic powder from spent lithi-um ion batteries: glucose oxidative pathways and particle area evolution, J. Ind. Eng. Chem., 20, 3201-3207. https://doi.org/10.1016/j.jiec.2013.11.066
  66. Paulino, J.F., Busnardo, N.G. and Afonso, J.C. (2008). Recovery of valuable ele-ments from spent Li-batteries, J. Hazard. Mater., 150, 843-849. https://doi.org/10.1016/j.jhazmat.2007.10.048
  67. Rocchetti, L., Vegliò, F., Kopacek, B. and Beolchini, F. (2013). Environmental im-pact assessment of hydrometallurgical processes for metal recovery from WEEE residues using a portable prototype plant, Environ. Sci. Technol., 47, 1581-1588.
  68. Salgado, R.M., Danzi, F., Oliveira, J.E., El-Azab, A., Camanho, P.P. and Braga, M.H. (2021). The latest trends in electric vehicles batteries, Mol., 26, 3188.
  69. Santos, V., Celante, V., Lelis, M. and Freitas, M. (2012). Chemical and electro-chemical recycling of the nickel, cobalt, zinc and manganese from the positives electrodes of spent Ni-MH batteries from mobile phones, J. Power Sour., 218, 435-444. https://doi.org/10.1016/j.jpowsour.2012.07.024
  70. Jeong, S.P., Cho, K.J., Suh, S.B., Park, S.H., Yoon, H.S., Min, T.J., Park, J.W., (2022). Valuable resource recovery based on the water treatment technologies: a review. J. Korean Soc. Water Wastewater, 36(6), 319-327. https://doi.org/10.11001/jksww.2022.36.6.319
  71. Shen, Y. (2022). Recycling cathode materials of spent lithium-ion batteries for advanced catalysts production, J. Power Sour., 528, 231220.
  72. Shi, J., Peng, C., Chen, M., Li, Y., Eric, H., Klemettinen, L., Lundstrom, M., Taskinen, P. and Jokilaakso, A. (2019). Sulfation roasting mechanism for spent lithium-ion battery metal oxides under SO2-O2-Ar atmosphere, Jom, 71, 4473-4482. https://doi.org/10.1007/s11837-019-03800-5
  73. Shuva, M.A.H. and Kurny, A. (2013). Hydrometallurgical recovery of value met-als from spent lithium ion batteries, Am. J. Mater. Eng. Technol., 1, 8-12.
  74. SNE Research. Lithium ion battery cathode technology trend and market forecast (2017). https://www.sneresearch.com/en/ (February 27, 2023).
  75. Sun, L. and Qiu, K. (2011). Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries, J. Hazard. Mater., 194, 378-384. https://doi.org/10.1016/j.jhazmat.2011.07.114
  76. Sun, L. and Qiu, K. (2012). Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries, Waste manag., 32, 1575-1582. https://doi.org/10.1016/j.wasman.2012.03.027
  77. Swain, B., Jeong, J., Lee, J.C., Lee, G.H. and Sohn, J.S. (2007). Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries, J. Power Sour., 167, 536-544. https://doi.org/10.1016/j.jpowsour.2007.02.046
  78. Tang, H., Dai, X., Qiang, L., Qiao, Y. and Tan, F. (2020). Selective Leaching of LiFePO4 by H2SO4 in the Presence of NaClO3, Rev. De Chim., 71, 248-254.
  79. Tesfaye, F., Lindberg, D., Hamuyuni, J., Taskinen, P. and Hupa, L. (2017). Improving urban mining practices for optimal recovery of resources from e-waste, Miner. Eng., 111, 209-221. https://doi.org/10.1016/j.mineng.2017.06.018
  80. Wang, F., Sun, R., Xu, J., Chen, Z. and Kang, M. (2016). Recovery of cobalt from spent lithium ion batteries using sulphuric acid leaching followed by solid-liquid separation and solvent extraction, RSC Adv., 6, 85303-85311. https://doi.org/10.1039/C6RA16801A
  81. Wang, H., Huang, K., Zhang, Y., Chen, X., Jin, W., Zheng, S., Zhang, Y. and Li, P. (2017). Recovery of lithium, nickel, and cobalt from spent lithium-ion battery powders by selective ammonia leaching and an adsorption separation system, ACS Sustain. Chem. Eng., 5, 11489-11495. https://doi.org/10.1021/acssuschemeng.7b02700
  82. Wang, R.C., Lin, Y.C. and Wu, S.H. (2009). A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries, Hydrometall., 99, 194-201. https://doi.org/10.1016/j.hydromet.2009.08.005
  83. Xu, J., Thomas, H.R., Francis, R.W., Lum, K.R., Wang, J. and Liang, B. (2008). A review of processes and technologies for the recycling of lithium-ion secondary batteries, J. Power Sour., 177, 512-527. https://doi.org/10.1016/j.jpowsour.2007.11.074
  84. Yadav, P., Jie, C.J., Tan, S. and Srinivasan, M. (2020). Recycling of cathode from spent lithium iron phosphate batteries, J. Hazard. Mater., 399, 123068.
  85. Yang, L., Xi, G. and Xi, Y. (2015). Recovery of Co, Mn, Ni, and Li from spent lithium ion batteries for the preparation of LiNixCoyMnzO2 cathode materials, Ceram. Int., 41, 11498-11503. https://doi.org/10.1016/j.ceramint.2015.05.115
  86. Yang, Y., Meng, X., Cao, H., Lin, X., Liu, C., Sun, Y., Zhang, Y. and Sun, Z. (2018). Selective recovery of lithium from spent lithium iron phosphate batteries: a sustainable process, Green Chem., 20, 3121-3133. https://doi.org/10.1039/C7GC03376A
  87. Yao, L., Feng, Y. and Xi, G. (2015). A new method for the synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries, RSC Adv., 5, 44107-44114. https://doi.org/10.1039/C4RA16390G
  88. Yao, Y., Zhu, M., Zhao, Z., Tong, B., Fan, Y. and Hua, Z. (2018). Hydrometallurgical processes for recycling spent lithium-ion batteries: a critical review, ACS Sustain. Chem. Eng., 6, 13611-13627. https://doi.org/10.1021/acssuschemeng.8b03545
  89. Zeng, X., Li, J. and Shen, B. (2015). Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid, J. Hazard. Mater., 295, 112-118. https://doi.org/10.1016/j.jhazmat.2015.02.064
  90. Zhang, P., Yokoyama, T., Itabashi, O., Suzuki, T.M. and Inoue, K. (1998). Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometall., 47, 259-271. https://doi.org/10.1016/S0304-386X(97)00050-9
  91. Zhang, P., Yokoyama, T., Itabashi, O., Wakui, Y., Suzuki, T.M. and Inoue, K. (1998). Hydrometallurgical process for recovery of metal values from spent nickel-metal hydride secondary batteries, Hydrometall., 50, 61-75. https://doi.org/10.1016/S0304-386X(98)00046-2
  92. Zhang, X., Bian, Y., Xu, S., Fan, E., Xue, Q., Guan, Y., Wu, F., Li, L. and Chen, R. (2018). Innovative application of acid leaching to regenerate Li(Ni1/3Co1/3Mn1/3)O2 cathodes from spent lithium-ion batteries, ACS Sustain. Chem. Eng., 6, 5959-5968. https://doi.org/10.1021/acssuschemeng.7b04373
  93. Zhang, X., Cao, H., Xie, Y., Ning, P., An, H., You, H. and Nawaz, F. (2015). A closed-loop process for recycling LiNi1/3Co1/3Mn1/3O2 from the cathode scraps of lithium-ion batteries: Process optimization and kinetics analysis, Sep. Purif. Technol., 150, 186-195. https://doi.org/10.1016/j.seppur.2015.07.003
  94. Zheng, R., Zhao, L., Wang, W., Liu, Y., Ma, Q., Mu, D., Li, R. and Dai, C. (2016). Optimized Li and Fe recovery from spent lithium-ion batteries via a solution-precipitation method, RSC Adv., 6, 43613-43625. https://doi.org/10.1039/C6RA05477C
  95. Zheng, Y., Long, H., Zhou, L., Wu, Z., Zhou, X., You, L., Yang, Y. and Liu, J. (2016). Leaching procedure and kinetic studies of cobalt in cathode materials from spent lithium ion batteries using organic citric acid as leachant, Int. J. Environ. Res., 10, 159-168.
  96. Zhu, S.G., He, W.Z., Li, G.M., Xu, Z., Zhang, X.J. and Huang, J.W. (2012). Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation, Trans. Nonfferous Metal Soc.,22, 2274-2281. https://doi.org/10.1016/S1003-6326(11)61460-X
  97. Zhuang, L., Sun, C., Zhou, T., Li, H. and Dai, A. (2019). Recovery of valuable metals from LiNi0.5Co0.2Mn0.3O2 cathode materials of spent Li-ion batteries using mild mixed acid as leachant, Waste Manage., 85, 175-185. https://doi.org/10.1016/j.wasman.2018.12.034
  98. Zou, H., Gratz, E., Apelian, D. and Wang, Y. (2013). A novel method to recycle mixed cathode materials for lithium ion batteries, Green Chem., 15, 1183-1191. https://doi.org/10.1039/c3gc40182k