DOI QR코드

DOI QR Code

Antisense oligodeoxynucleotides against dynamin-related protein 1 reduce remifentanil-induced hyperalgesia by modulating spinal N-methyl-D-aspartate receptor expression in rats

  • Songyi Zhou (Department of Anesthesiology, 1st Affiliated Hospital, Wenzhou Medical University) ;
  • Yizhao Pan (Department of Anesthesiology, 1st Affiliated Hospital, Wenzhou Medical University) ;
  • Yan Zhang (Operative Room Nursing, 1st Affiliated Hospital, Wenzhou Medical University) ;
  • Lijun Gu (Department of Anesthesiology, 1st Affiliated Hospital, Wenzhou Medical University) ;
  • Leikai Ma (Department of Anesthesiology, 1st Affiliated Hospital, Wenzhou Medical University) ;
  • Qingqing Xu (Operative Room Nursing, 1st Affiliated Hospital, Wenzhou Medical University) ;
  • Weijian Wang (Department of Anesthesiology, 1st Affiliated Hospital, Wenzhou Medical University) ;
  • Jiehao Sun (Department of Anesthesiology, 1st Affiliated Hospital, Wenzhou Medical University)
  • Received : 2022.12.02
  • Accepted : 2023.04.02
  • Published : 2023.07.01

Abstract

Background: Spinal N-methyl-D-aspartate (NMDA) receptor activation is attributed to remifentanil-induced hyperalgesia (RIH). However, the specific mechanism and subsequent treatment is still unknown. Previous studies have shown that the dynamin-related protein 1 (DRP1)-mitochondria-reactive oxygen species (ROS) pathway plays an important role in neuropathic pain. This study examined whether antisense oligodeoxynucleotides against DRP1 (AS-DRP1) could reverse RIH. Methods: The authors first measured changes in paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) at 24 hours before remifentanil infusion and 4, 8, 24, and 48 hours after infusion. The expression levels of DRP1 and NR2B were measured after behavioral testing using Western blotting. In addition, DRP1 expression was knocked down by intrathecal administration of AS-DRP1 to investigate the effects of DRP1 on RIH. The behavioral testing, the expression levels of spinal DRP1 and NR2B, and dorsal mitochondrial superoxide were measured. Changes in mitochondrial morphology were assessed using electron microscopy. Results: After remifentanil exposure, upregulation of spinal DRP1 and NR2B was observed along with a reduction in PWMT and PWTL. In addition, AS-DRP1 improved RIH-induced PWTL and PWMT (P < 0.001 and P < 0.001) and reduced remifentanil-mediated enhancement of spinal DRP1 and NR2B expression (P = 0.020 and P = 0.022). More importantly, AS-DRP1 reversed RIH-induced mitochondrial fission (P = 0.020) and mitochondrial superoxide upregulation (P = 0.031). Conclusions: These results indicate that AS-DRP1 could modulate NMDA receptor expression to prevent RIH through the DRP1-mitochondria-ROS pathway.

Keywords

Acknowledgement

The authors thank Dr. Fangfang Liu at Peking University for statistical assistance.

References

  1. Kim SH, Stoicea N, Soghomonyan S, Bergese SD. Intraoperative use of remifentanil and opioid induced hyperalgesia/acute opioid tolerance: systematic review. Front Pharmacol 2014; 5: 108.
  2. Lee C, Song YK, Lee JH, Ha SM. The effects of intraoperative adenosine infusion on acute opioid tolerance and opioid induced hyperalgesia induced by remifentanil in adult patients undergoing tonsillectomy. Korean J Pain 2011; 24: 7-12. https://doi.org/10.3344/kjp.2011.24.1.7
  3. Shu RC, Zhang LL, Wang CY, Li N, Wang HY, Xie KL, et al. Spinal peroxynitrite contributes to remifentanil-induced postoperative hyperalgesia via enhancement of divalent metal transporter 1 without iron-responsive element-mediated iron accumulation in rats. Anesthesiology 2015; 122: 908-20. https://doi.org/10.1097/ALN.0000000000000562
  4. Roeckel LA, Le Coz GM, Gaveriaux-Ruff C, Simonin F. Opioid-induced hyperalgesia: cellular and molecular mechanisms. Neuroscience 2016; 338: 160-82. https://doi.org/10.1016/j.neuroscience.2016.06.029
  5. Zhang L, Shu R, Zhao Q, Li Y, Yu Y, Wang G. Preoperative butorphanol and flurbiprofen axetil therapy attenuates remifentanil-induced hyperalgesia after laparoscopic gynaecological surgery: a randomized double-blind controlled trial. Br J Anaesth 2016; 117: 504-11. https://doi.org/10.1093/bja/aew248
  6. Zhao M, Joo DT. Enhancement of spinal N-methylD-aspartate receptor function by remifentanil action at delta-opioid receptors as a mechanism for acute opioid-induced hyperalgesia or tolerance. Anesthesiology 2008; 109: 308-17. https://doi.org/10.1097/ALN.0b013e31817f4c5d
  7. Li Y, Wang H, Xie K, Wang C, Yang Z, Yu Y, et al. Inhibition of glycogen synthase kinase-3β prevents remifentanil-induced hyperalgesia via regulating the expression and function of spinal N-methyl-D-aspartate receptors in vivo and vitro. PLoS One 2013; 8: e77790.
  8. Wang C, Li Y, Wang H, Xie K, Shu R, Zhang L, et al. Inhibition of DOR prevents remifentanil induced postoperative hyperalgesia through regulating the trafficking and function of spinal NMDA receptors in vivo and in vitro. Brain Res Bull 2015; 110: 30-9. https://doi.org/10.1016/j.brainresbull.2014.12.001
  9. Dikalov SI, Harrison DG. Methods for detection of mitochondrial and cellular reactive oxygen species. Antioxid Redox Signal 2014; 20: 372-82. https://doi.org/10.1089/ars.2012.4886
  10. Areti A, Yerra VG, Komirishetty P, Kumar A. Potential therapeutic benefits of maintaining mitochondrial health in peripheral neuropathies. Curr Neuropharmacol 2016; 14: 593-609. https://doi.org/10.2174/1570159X14666151126215358
  11. Im YB, Jee MK, Choi JI, Cho HT, Kwon OH, Kang SK. Molecular targeting of NOX4 for neuropathic pain after traumatic injury of the spinal cord. Cell Death Dis 2012; 3: e426.
  12. Gwak YS, Hassler SE, Hulsebosch CE. Reactive oxygen species contribute to neuropathic pain and locomotor dysfunction via activation of CamKII in remote segments following spinal cord contusion injury in rats. Pain 2013; 154: 1699-708. https://doi.org/10.1016/j.pain.2013.05.018
  13. Salvemini D, Little JW, Doyle T, Neumann WL. Roles of reactive oxygen and nitrogen species in pain. Free Radic Biol Med 2011; 51: 951-66. https://doi.org/10.1016/j.freeradbiomed.2011.01.026
  14. Doyle T, Bryant L, Batinic-Haberle I, Little J, Cuzzocrea S, Masini E, et al. Supraspinal inactivation of mitochondrial superoxide dismutase is a source of peroxynitrite in the development of morphine antinociceptive tolerance. Neuroscience 2009; 164: 702-10. https://doi.org/10.1016/j.neuroscience.2009.07.019
  15. Amigo I, da Cunha FM, Forni MF, Garcia-Neto W, Kakimoto PA, Luevano-Martinez LA, et al. Mitochondrial form, function and signalling in aging. Biochem J 2016; 473: 3421-49. https://doi.org/10.1042/BCJ20160451
  16. Manczak M, Kandimalla R, Yin X, Reddy PH. Mitochondrial division inhibitor 1 reduces dynamin-related protein 1 and mitochondrial fission activity. Hum Mol Genet 2019; 28: 177-99. Erratum in: Hum Mol Genet 2019; 28: 875-6.
  17. Smirnova E, Griparic L, Shurland DL, van der Bliek AM. Dynamin-related protein Drp1 is required for mitochondrial division in mammalian cells. Mol Biol Cell 2001; 12: 2245-56. https://doi.org/10.1091/mbc.12.8.2245
  18. Ye L, Xiao L, Bai X, Yang SY, Li Y, Chen Y, et al. Spinal mitochondrial-derived ROS contributes to remifentanil-induced postoperative hyperalgesia via modulating NMDA receptor in rats. Neurosci Lett 2016; 634: 79-86. https://doi.org/10.1016/j.neulet.2016.09.016
  19. Liu X, Zhang J, Zhao H, Mei H, Lian Q, ShangGuan W. The effect of propofol on intrathecal morphine-induced pruritus and its mechanism. Anesth Analg 2014; 118: 303-9. https://doi.org/10.1213/ANE.0000000000000086
  20. Gao Y, Zhan W, Jin Y, Chen X, Cai J, Zhou X, et al. KCC2 receptor upregulation potentiates antinociceptive effect of GABAAR agonist on remifentanil-induced hyperalgesia. Mol Pain 2022; 18: 17448069221082880.
  21. Gao Y, Zhou S, Pan Y, Gu L, He Y, Sun J. Wnt3a inhibitor attenuates remifentanil-induced hyperalgesia via downregulating spinal NMDA receptor in rats. J Pain Res 2020; 13: 1049-58. https://doi.org/10.2147/JPR.S250663
  22. Brennan TJ, Vandermeulen EP, Gebhart GF. Characterization of a rat model of incisional pain. Pain 1996; 64: 493-502.
  23. Kanda H, Liu S, Iida T, Yi H, Huang W, Levitt RC, et al. Inhibition of mitochondrial fission protein reduced mechanical allodynia and suppressed spinal mitochondrial superoxide induced by perineural human immunodeficiency virus gp120 in Rats. Anesth Analg 2016; 122: 264-72. https://doi.org/10.1213/ANE.0000000000000962
  24. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994; 53: 55-63. https://doi.org/10.1016/0165-0270(94)90144-9
  25. Wang G, Yang Y, Wang C, Huang J, Wang X, Liu Y, et al. Exploring the role and mechanisms of diallyl trisulfide and diallyl disulfide in chronic constriction-induced neuropathic pain in rats. Korean J Pain 2020; 33: 216-25. https://doi.org/10.3344/kjp.2020.33.3.216
  26. Cabanero D, Campillo A, Celerier E, Romero A, Puig MM. Pronociceptive effects of remifentanil in a mouse model of postsurgical pain: effect of a second surgery. Anesthesiology 2009; 111: 1334-45. https://doi.org/10.1097/ALN.0b013e3181bfab61
  27. Schwartz ES, Kim HY, Wang J, Lee I, Klann E, Chung JM, et al. Persistent pain is dependent on spinal mitochondrial antioxidant levels. J Neurosci 2009; 29: 159-68. https://doi.org/10.1523/JNEUROSCI.3792-08.2009
  28. Schwartz ES, Lee I, Chung K, Chung JM. Oxidative stress in the spinal cord is an important contributor in capsaicin-induced mechanical secondary hyperalgesia in mice. Pain 2008; 138: 514-24. https://doi.org/10.1016/j.pain.2008.01.029
  29. Kun L, Lu L, Yongda L, Xingyue L, Guang H. Hyperbaric oxygen promotes mitophagy by activating CaMKKβ/AMPK signal pathway in rats of neuropathic pain. Mol Pain 2019; 15: 1744806919871381. 
  30. Lenz H, Raeder J, Draegni T, Heyerdahl F, Schmelz M, Stubhaug A. Effects of COX inhibition on experimental pain and hyperalgesia during and after remifentanil infusion in humans. Pain 2011; 152: 1289-97. https://doi.org/10.1016/j.pain.2011.02.007
  31. Deng M, Chen SR, Pan HL. Presynaptic NMDA receptors control nociceptive transmission at the spinal cord level in neuropathic pain. Cell Mol Life Sci 2019; 76: 1889-99. https://doi.org/10.1007/s00018-019-03047-y
  32. Qi F, Liu T, Zhang X, Gao X, Li Z, Chen L, et al. Ketamine reduces remifentanil-induced postoperative hyperalgesia mediated by CaMKII-NMDAR in the primary somatosensory cerebral cortex region in mice. Neuropharmacology 2020; 162: 107783.
  33. Hahnenkamp K, Nollet J, Van Aken HK, Buerkle H, Halene T, Schauerte S, et al. Remifentanil directly activates human N-methyl-D-aspartate receptors expressed in Xenopus laevis oocytes. Anesthesiology 2004; 100: 1531-7. https://doi.org/10.1097/00000542-200406000-00028
  34. Tsushima K, Bugger H, Wende AR, Soto J, Jenson GA, Tor AR, et al. Mitochondrial reactive oxygen species in lipotoxic hearts induce post-translational modifications of AKAP121, DRP1, and OPA1 that promote mitochondrial fission. Circ Res 2018; 122: 58-73. https://doi.org/10.1161/CIRCRESAHA.117.311307
  35. Jenner P. Oxidative damage in neurodegenerative disease. Lancet 1994; 344: 796-8. https://doi.org/10.1016/S0140-6736(94)92347-7
  36. Bailey SM. A review of the role of reactive oxygen and nitrogen species in alcohol-induced mitochondrial dysfunction. Free Radic Res 2003; 37: 585-96. https://doi.org/10.1080/1071576031000091711
  37. Gibellini L, Bianchini E, De Biasi S, Nasi M, Cossarizza A, Pinti M. Natural compounds modulating mitochondrial functions. Evid Based Complement Alternat Med 2015; 2015: 527209.
  38. Ferrari LF, Chum A, Bogen O, Reichling DB, Levine JD. Role of Drp1, a key mitochondrial fission protein, in neuropathic pain. J Neurosci 2011; 31: 11404-10. https://doi.org/10.1523/JNEUROSCI.2223-11.2011
  39. Hao M, Tang Q, Wang B, Li Y, Ding J, Li M, et al. Resveratrol suppresses bone cancer pain in rats by attenuating inflammatory responses through the AMPK/Drp1 signaling. Acta Biochim Biophys Sin (Shanghai) 2020; 52: 231-40. https://doi.org/10.1093/abbs/gmz162
  40. Li MY, Ding JQ, Tang Q, Hao MM, Wang BH, Wu J, et al. SIRT1 activation by SRT1720 attenuates bone cancer pain via preventing Drp1-mediated mitochondrial fission. Biochim Biophys Acta Mol Basis Dis 2019; 1865: 587-98.  https://doi.org/10.1016/j.bbadis.2018.12.017