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There is increasing evidence that the relationship between chronic pain and infections is complex and intertwined. 
Bacterial and viral infections can cause pain through numerous mechanisms such as direct tissue damage and 
inflammation, the induction of excessive immunologic activity, and the development of peripheral or central 
sensitization. Treating infections might relieve pain by attenuating these processes, but a growing body of literature 
suggests that some antimicrobial therapies confer analgesic effects, including for nociceptive and neuropathic 
pain symptoms, and affective components of pain. The analgesic mechanisms of antimicrobials are indirect, 
but might be conceptualized into two broad categories: 1) the reduction of the infectious burden and associated 
pro-inflammatory processes; and 2) the inhibition of signaling processes (e.g., enzymatic and cytokine activity) 
necessary for nociception and maladaptive neuroplastic changes via off-target effects (unintended binding sites). 
For the former, there is evidence that symptoms of chronic low back pain (when associated with Modic type 1 
changes), irritable bowel syndrome, inflammatory bowel disease, chronic pelvic pain, and functional dyspepsia 
might be improved after antibiotic treatment, though significant questions remain regarding specific regimens and 
dose, and which subpopulations are most likely to benefit. For the latter, there is evidence that several antimicrobial 
classes and medications exert analgesic effects independent of their reduction of infectious burden, and these 
include cephalosporins, ribavirin, chloroquine derivatives, rapalogues, minocycline, dapsone, and piscidin-1. This 
article aims to comprehensively review the existing literature for antimicrobial agents that have demonstrated 
analgesic efficacy in preclinical or clinical studies.
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INTRODUCTION

Pain is a cardinal sign of infection, so it stands to reason 
that antimicrobial agents that treat infection may allevi-
ate pain. Yet, in clinical practice the relationship between 
pain, infection and antimicrobial agents is more complex. 
Many individuals whose infection is eradicated may con-
tinue to experience chronic pain via mechanisms that in-
clude autoimmune reactions and peripheral and central 
sensitization (e.g., Lyme disease, myalgic encephalomy-
elitis, “long COVID”), in which case antimicrobial treat-
ment may be less effective or ineffective [1]. Low-grade 
infection may cause neuropathic pain via demyelination, 
neuronal damage, and deafferentation, and predispose to 
somatic (e.g., discogenic back or neck pain, periodontitis) 
or visceral nociceptive pain (e.g., some cases of bladder 
pain syndrome/interstitial cystitis, inflammatory bowel 
disease [IBD]) through mucosal injury, chronic inflam-
mation, or accelerated degenerative processes [2–5]. 
Recent evidence also points to variations in gut and other 
organ system microbiomes as sources of acute pain and 
chronic neuropathic, nociceptive, or nociplastic pain [6].

All organisms, including humans, share similarities in 
cellular machinery with microbes, and alterations in the 
microbiomes of the gut and other organ systems (e.g., 
respiratory, skin, genitourinary) can have a profound 
impact on pain. Therefore, the connections among infec-
tions, the treatment of infections, and chronic pain are 
not surprising. Over the past few decades, a growing body 
of literature has been devoted to these complex relation-
ships [1,4,6], but there has been no systematic attempt to 
review antimicrobial therapy as a treatment for chronic 
pain in general, which is more clinically relevant to front-
line pain practitioners. The aims of this two-part series 
are to outline the direct and indirect mechanisms by 
which antimicrobial therapies can alleviate nociception 
and pain, categorize the preclinical and clinical evidence 
supporting antimicrobial therapies in pain conditions, 
and provide a framework for future directions in this im-
portant, but hitherto underrecognized area.

MAIN BODY

1. Search strategy and study selection

The search strategy was the same for parts 1 and 2 of this 
series. From December 2022 to April 2023, we searched 
the following databases: PubMed, Embase, and Google 
Scholar, without language or date restrictions. We cross-

referenced the major search terms “chronic pain,” “pain,” 
“antimicrobial,” “antibiotic,” “antiviral,” “antifungal,” 
“mechanism,” and “infection” with various iterations and 
subcategories of these keywords to correspond with vari-
ous pathogens, medications, mechanisms, and chronic 
pain conditions. We prioritized peer-reviewed pooled 
analyses (e.g., meta-analyses and systematic reviews) and 
randomized controlled trials (RCTs), but also included 
preclinical studies, narrative reviews, case series, and 
retrospective studies as indicated. In addition to primary 
sources, we searched reference lists of retrieved articles.

2. Mechanisms of analgesia by antimicrobial agents

The aim of an antimicrobial agent is to eradicate its target 
pathogen before resistance develops [7]. Bacterial and vi-
ral infections can cause pain via numerous mechanisms 
including direct tissue damage, the induction of injurious 
immune responses, and the development of peripheral 
or central sensitization [1]. Although some antibiotics 
and antivirals might cause painful adverse effects (e.g., 
arthralgia with fluoroquinolones, peripheral neuropathy 
with antiretroviral therapy) [8], others may confer anal-
gesia in the setting of infections. The analgesic mecha-
nisms of antimicrobials are via indirect actions which 
might be conceptualized into two broad categories (Fig. 
1): 1) the reduction of infectious burden and associated 
pro-inflammatory processes; and 2) the inhibition of sig-
naling processes (e.g., enzymatic and cytokine activity) 
necessary for nociception and maladaptive neuroplastic 
changes via off-target effects (unintended binding sites). 
Altogether, a variety of acute and chronic pain conditions 
may be alleviated by antimicrobial agents (Fig. 2).

3. Reduction of infectious burden and 

inflammation

The etiology of Modic type 1 vertebral endplate changes 
remains controversial, but infection remains one of sev-
eral plausible causes [9]. Positive cultures (especially for 
anaerobic microorganisms such as Propionibacterium 
acnes) from biopsies of herniated disc material have been 
associated with new Modic changes at adjacent vertebrae 
[10]. In a recent literature review assessing the use of anti-
biotics for chronic low back pain, Gilligan and colleagues 
[4] identified only two randomized placebo-controlled 
trials [11,12]. In the trial by Albert et al. [11], patients with 
magnetic resonance imaging (MRI) findings of Modic 
type 1 changes who received 100 days of amoxicillin-
clavulanic acid reported statistically significant improve-
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ments in pain and function. Patients in the antibiotic 
group also had a greater likelihood of MRI-confirmed 
resolution of their Modic changes. However, in the trial 
by Bråten et al. [12], patients with MRI-confirmed Modic 
type 1 or type 2 changes reported no benefit in pain or 
functional outcomes after 100 days of amoxicillin, though 
post-intervention MRIs were not assessed. Given this 
limited and mixed evidence, it is uncertain whether anti-
biotics can reliably treat pain in the context of Modic type 
1 changes, which might be associated with low-grade 

infection, pro-inflammatory processes, or both [9,10]. 
Nonetheless, the association between Modic type 1 reso-
lution and analgesia with antibiotic use suggests that the 
reduction of microbial and pro-inflammatory burden is a 
potential mechanism.

A meta-analysis of patients with irritable bowel syn-
drome (IBS) found potential benefit for probiotics and 
rifaximin for abdominal pain symptoms via potential 
alterations to the gut microbiota, but high heterogeneity 
among the included studies precluded estimates of effect 
size [13]. A systematic review of patients with IBD also 
found analgesic benefit from antibiotics by treating small 
bowel bacterial overgrowth [14], although the data for this 
conclusion were based on one RCT [15]. A meta-analysis 
of patients with chronic prostatitis/chronic pelvic pain 
syndrome found that antibiotics (e.g., fluoroquinolones) 
and non-steroidal anti-inflammatory drugs reduced 
pain scores compared to a placebo, with a combination 
of α-blockers and antibiotics being the most efficacious 
regimen for analgesia [16].

In functional dyspepsia, although a meta-analysis of 
patients with known Helicobacter pylori infection failed 
to identify short-term (< 1 year) symptomatic improve-
ment with antibiotics, there was significant improvement 
noted on long-term (≥ 1 year) follow-up [17]. These de-
ferred benefits might be attributable to a greater likeli-
hood of antibiotic-treated patients to have histologic 
resolution of chronic gastritis and the prevention of pep-
tic ulcer disease [17]. In one placebo-controlled RCT that 
excluded patients with H. pylori, rifaximin significantly 
reduced dyspeptic symptoms, though follow-up was lim-
ited to only 8 weeks and the putative mechanism (altera-
tion of the duodenal microbiota) has yet to be confirmed 
[18]. The precise relationship between H. pylori and func-
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Fig. 1. Indirect analgesic effects of 
antimicrobial medications. NSAIDs: 
non-steroidal anti-inflammatory 
drugs, IL: interleukin, TNF: tumor 
necrosis factor.
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Fig. 2. Artistic rendition illustrating representative acute and 
chronic pain conditions that may result from infectious process-
es. Antibacterial, antiviral, and anti-parasitic agents have been 
found to confer analgesia in each of the following conditions via 
direct effects on pathogen load (e.g., spinal pain, dyspepsia) 
and/or by off-target effects (e.g., mitigating autoimmune and 
sensitization processes). Drawing by Seffrah Jin Cohen.
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tional dyspepsia remains unclear. H. pylori is recognized 
as an organic cause of dyspeptic symptoms, but consen-
sus guidelines have suggested with some controversy [19] 
that functional dyspepsia is a specific diagnosis that is 
distinct from H. pylori-associated dyspepsia [20] and bet-
ter reserved for describing symptoms that persist despite 
successful antibiotic treatment.

In summary, when microbiome dysbiosis (e.g., IBS) or 
an active infection (whether symptomatic or subclinical) 
potentially mediates pain symptoms, antibiotics might 
confer analgesia by reducing pathogen burden or alter-
ing microbiome compositions, leading to the attenuation 
of further tissue injury and pro-inflammatory processes. 
The available evidence is limited, and more studies are 
needed to assess how strongly analgesia is associated 
with radiologic or histologic evidence of infection eradi-
cation.

4. Inhibition of nociception and pain signaling via 

off-target effects

Antimicrobials can confer analgesia via mechanisms in-
dependent of reducing infectious burden and associated 
inflammation. Several antimicrobial agents are known to 
inhibit enzymes, proteins, or neurotransmitters necessary 
for pain signaling (e.g., protein kinase expression, pro-
inflammatory cytokine activity) and maladaptive neuro-
plastic changes (e.g., dorsal horn remodeling, induction 
of hyperalgesia). These disruptions to pain processing are 
generally the consequence of unintended binding sites, 
and may be described as beneficial off-target effects [21]. 
Antimicrobial agents with known off-target analgesic 
effects are summarized below and in Table 1. It is im-
portant to note that because analgesia is not the primary 
therapeutic intent for antimicrobials, relatively few stud-
ies specifically assess the effect of antimicrobials on noci-
ception, and this relationship might be underrecognized.

1) Cephalosporins

Cephalosporins are beta-lactam antimicrobials first 
discovered and isolated from the mold Cephalosporin 
acremonium (also named Acremonium chrysogenum) in 
1945, and have since become one of the most prescribed 
antibiotics [22]. Five generations of cephalosporins have 
been developed and are collectively utilized against a va-
riety of gram-positive and gram-negative bacteria. Ceph-
alosporins exert bactericidal activity via their beta-lactam 
rings, which inhibit penicillin-binding proteins essential 
for bacterial cell wall synthesis [23].

In preclinical studies, there is evidence that ceftriaxone 
increases the expression of glial glutamate transporter-1 
(GLT-1), which might confer neuroprotective effects by 
preventing neurotoxicity from excessive glutamate lev-
els [24]. In a murine chronic constriction injury (CCI) 
model, hyperalgesia and allodynia were associated with 
downregulation of GLT-1 in the spinal dorsal horn; when 
intraperitoneal or intrathecal ceftriaxone was adminis-
tered, GLT-1 expression and glutamate uptake increased, 
and thermal hyperalgesia and mechanical allodynia 
were reversed [25]. Moreover, when a GLT-1 inhibitor 
was administered following ceftriaxone administration, 
these beneficial effects were blunted [25]. In another 
murine study comparing the effects of ceftriaxone and 
gabapentin on neuropathic pain, both medications pro-
duced a similar effect size on the reduction of allodynia 
and hyperalgesia [26]. Ceftriaxone might also inhibit pro-
inflammatory cytokine production (e.g., tumor necrosis 
factor [TNF]-α, interleukin [IL]-1β) in response to neu-
ropathic injury [27], potentially via a poorly understood 
relationship between GLT-1 and inflammatory mediators 
[28].

Limited clinical data exist pertaining to cephalosporins 
and analgesia. In one case report, cephalexin following a 
course of minocycline provided a near-resolution of spas-
ticity and pain in a patient with neurosarcoidosis [29]. In 
one comparative-effectiveness trial in 45 patients under-
going median or ulnar nerve decompression, participants 
were randomized to receive a single pre-incisional infu-
sion of saline, saline with ceftriaxone (2 grams), or saline 
with cefazolin (2 grams). The patients in the ceftriaxone 
group reported a significant increase in pain thresholds 
up to 6 hours after surgery, whereas the patients in the 
other groups reported no significant difference [30]. The 
same investigators also tested a murine model of postsur-
gical pain, and the mice that received intraperitoneal cef-
triaxone had greater dorsal horn GLT-1 expression and a 
greater reduction in nocifensive behavior than those that 
received saline or cefazolin [30]. This study did not evalu-
ate why cefazolin, also a cephalosporin, appeared to lack 
analgesic efficacy. Although cefazolin is a first-generation 
cephalosporin whereas ceftriaxone is a third-generation 
cephalosporin [23], cefazolin has also demonstrated the 
ability to upregulate GLT-1 expression [31]. Further stud-
ies are needed to clarify whether the different generations 
of cephalosporins involve differential analgesic mecha-
nisms or confer varying levels of analgesia.
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Table 1. Summary of the evidence for antimicrobial agents with possible off-target analgesic effects

Antimicrobial agent Mechanism(s) of action Preclinical evidence for 
antinociception

Clinical evidence for a 
therapeutic effect

Cephalosporins [24,27] Upregulation of glial glutamate 
transporter-1, preventing 
glutamate neurotoxicity 
and potentially reducing 
pro-inflammatory cytokine 
concentrations.

Evidence for neuroprotection in 
neurodegenerative diseases 
(e.g., amyotrophic lateral 
sclerosis) and the prevention 
or treatment of neuropathic 
pain.

Ceftriaxone possibly mitigates 
post-surgical pain. Only 
specific cephalosporins, 
or specific generations of 
cephalosporins, might confer 
analgesic effects, but this 
requires confirmation.

Ribavirin [34,61] Possibly competitive inhibition 
of inosine monophosphate 
dehydrogenase, increasing 
the frequency of deleterious 
viral mutations. Partial 
reversal by naloxone suggests 
opioidergic effects.

Evidence for antinociception in 
models of acute inflammatory 
pain. Effect partially reversed 
by naloxone and enhanced 
by propranolol, baclofen, 
ibuprofen, and others.

Scant evidence for 
benefit compared to 
standard analgesics for 
viral-associated (e.g., 
chikungunya) joint pain.

Hydroxychloroquine, 
Chloroquine [40,50,61,65]

Antirheumatic effects may 
result from interference 
with "antigen processing" in 
macrophages and other cells, 
and inhibition of autophagy.

Evidence for complex regional 
pain syndrome and numerous 
inflammatory disorders and 
neoplastic diseases.

No evidence for benefit 
compared to placebo or 
standard analgesics for 
viral-associated joint pain. 
Less efficacious than other 
disease-modifying agents 
for rheumatoid arthritis but 
may provide value as add-on 
therapy. Low-level evidence 
for other inflammatory 
diseases (e.g., lupus, 
dermatomyositis). Anecdotal 
evidence for complex regional 
pain syndrome.

Rapamycin [73,91] Inhibits mammalian target 
of rapamycin complex 1 
(mTOR) and inhibits synaptic 
plasticity.

Evidence for neuropathic pain, 
opioid-induced hyperalgesia, 
central sensitization, 
affective components of pain, 
inflammatory myopathies, 
mitochondrial disorders, and 
cancer-associated pain.

Evidence for anti-tumor effects 
and cancer-associated pain. 
Anecdotal evidence in genetic 
heterotopic ossification and 
inflammatory myopathies.

Minocycline [99,102–
104,107,120,125,128]

Inhibits central and peripheral 
glial cell activity, attenuates 
release of inflammatory 
cytokines, and binds to 
NR2B subunit of N-methyl-D-
aspartate receptors.

Evidence for neuropathic (e.g., 
painful diabetic neuropathy) 
and nociceptive (e.g., 
visceral) pain conditions 
and cancer-associated bone 
pain. May reduce affective 
components of pain, such as 
depression, anxiety, and fear.

No benefit compared 
to placebo or tricyclic 
antidepressants for lumbar 
radicular pain. Potential 
benefit for peripheral 
neuropathic conditions in 
small prospective studies.

Dapsone [142,143] Inhibition of neutrophil activity 
and release of inflammatory 
cytokines.

Evidence for inflammatory 
disorders. May cause 
neuropathy and hemolysis 
with prolonged use.

Superior to placebo for 
rheumatoid arthritis, 
comparable to chloroquines. 
Anecdotal evidence for 
bullous systemic lupus 
erythematosus and several 
inflammatory dermatoses.

Piscidin-1 [173,174] Glial cell inhibition, 
suppression of 
cyclooxygenase-2 and 
inducible nitric oxide 
synthase.

Evidence for neuropathic pain 
and tumor apoptosis.

Clinical evidence is lacking.
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2) Ribavirin

Ribavirin is a guanosine analog that is used to treat respi-
ratory syncytial virus and Lassa virus, but is perhaps most 
recognized as a treatment for chronic hepatitis C when 
co-administered with interferon-alpha [32]. Ribavirin has 
several putative mechanisms of action, such as facilitat-
ing viral RNA chain termination, increasing the sensitivity 
of target cells to interferon, and inhibiting viral enzymes 
(e.g., inosine monophosphate dehydrogenase) necessary 
for energy production or genetic replication [32–34].

In one murine study, ribavirin decreased nociceptive 
responses to noxious stimuli (e.g., formalin, capsaicin) 
and provided analgesia for visceral pain (e.g ., intra-
abdominal acetic acid injections) [34]. Because these an-
algesic effects were attenuated with the administration of 
naloxone and enhanced with dopamine D2 receptor ac-
tivity (regardless of agonism or antagonism), endogenous 
opioid or dopaminergic pathways might be involved, 
though the exact mechanisms remain uncertain [34]. In 
two other murine studies, ribavirin reduced histologic 
signs of neuroinflammation, such as microglial infiltra-
tion and demyelination [35], as well as astrocyte prolif-
eration and glial scarring [36]. Ribavirin has also demon-
strated the ability to reduce levels of pro-inflammatory 
cytokines (e.g., IL-1β, IL-6, and TNF-α) [37], but the de-
gree to which this confers analgesia remains unclear.

Although ribavirin is not widely used for the purpose of 
analgesia, at least one proprietary medication using riba-
virin has been developed and tested in a peripheral nerve 
injury mouse model, which appeared to facilitate axonal 
regeneration and increase thresholds for hyperalgesia 
and allodynia [38].

3) Chloroquine derivatives

Chloroquine and hydroxychloroquine are antimalarial 
medications used as disease-modifying antirheumatic 
drugs (DMARDs) in several autoimmune conditions, 
such as systemic lupus erythematosus (SLE) [39] and 
rheumatoid arthritis (RA) [40], though more recent guide-
lines [41] have deemphasized the use of hydroxychloro-
quine as monotherapy or a first-line DMARD in RA due 
to concerns of modest benefits and substantial risks of 
adverse effects (e.g., nausea and vomiting [42], myopathy 
[43], retinopathy [44]). Chloroquine derivatives inhibit 
lysosomes [45] and several pathways in the immune cas-
cade, including Toll-like receptor (TLR) activity [46], pro-
inflammatory cytokine production (e.g., IL-1, TNF) [47], 
and T-cell antigen presentation [48]. The inhibition of 

lysosomal and T-cell activity, in conjunction with the re-
duction of TLR and proinflammatory cytokine signaling, 
is likely the means through which autoimmune activation 
and associated tissue injury is attenuated, but the mecha-
nisms of action for chloroquine derivatives are numerous 
and incompletely understood [49]. Although outside the 
scope of this review, the immunologic (e.g., inhibition of 
autophagy) and anti-inflammatory effects of chloroquine 
derivatives might inhibit tumor growth and increase the 
efficacy of chemotherapy drugs [50].

The numerous immunomodulatory and anti-inflam-
matory effects of chloroquine derivatives provide a mech-
anistic basis for conferring analgesia. Additionally, mu-
rine studies have demonstrated a local anesthetic effect 
when chloroquines are administered intrathecally [51] 
or subcutaneously [52,53], possibly via their ability to an-
tagonize potassium, sodium, and calcium channels [54]. 
However, clinical studies have mostly been negative, with 
large multicenter RCTs in osteoarthritis hand pain dem-
onstrating no benefit of hydroxychloroquine over placebo 
[55,56]. Similarly, a recent cost-utility analysis found that 
hydroxychloroquine does not provide cost-effective ben-
efits for pain and quality of life in hand osteoarthritis [57]. 
Although early data suggested that hydroxychloroquine 
might benefit arthritis pain in the context of SLE [58], a 
large placebo-controlled multicenter RCT demonstrated 
no benefit for hydroxychloroquine in inflammatory ar-
thritis pain [59]. A systematic review of treatments for 
chikungunya virus-associated pain found that chloro-
quine was superior to placebo for chronic pain, though 
not for acute pain, with only five trials comprising 402 
total patients included [60]. A more recent systematic re-
view that included 11 studies pertaining to chikungunya-
associated joint pain found no benefit from chloroquine 
or hydroxychloroquine compared to placebo [61].

Smaller studies continue to suggest that chloroquine 
derivatives might be of benefit in other pain syndromes 
with potential autoimmune-mediated mechanisms. Two 
case series of oral lichen planus [62,63] and a retrospec-
tive analysis in perineal lichen planus [64] suggest that 
hydroxychloroquine might facilitate the healing of painful 
erosions, but prospective placebo-controlled trials have 
yet to be completed. A small case series in seven patients 
with complex regional pain syndrome (CRPS) combined 
with a CRPS murine model demonstrated a decrease in 
self-reported pain scores with daily hydroxychloroquine, 
and reduced spinal cord dorsal horn microglial and cyto-
kine activity in the mice [65]. Allodynia, paw edema, and 
temperature discrepancies (signs associated with CRPS) 
were also decreased in the mice receiving hydroxychloro-
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quine, suggesting a reduction in neuroinflammation [65].
Although chloroquine derivatives do not appear to con-

fer a large magnitude of analgesia, and controlled studies 
and pooled analyses have so far been negative, their inhi-
bition of numerous inflammatory and immunologic pro-
cesses involved with pain signaling is well-described. It is 
possible that the pain mechanisms (and pain diagnoses) 
most amenable to treatment from chloroquine deriva-
tives have simply yet to be clarified.

4) Rapamycin (sirolimus) and rapalogues

Rapamycin (sirolimus) is a macrolide produced by the 
bacteria Streptomyces hygroscopicus that was initially 
utilized for its antifungal and immunosuppressive prop-
erties [66,67]. The molecular target of rapamycin was 
identified as a protein kinase that regulates intracellular 
anabolic and catabolic signaling in mammals, and this 
kinase was subsequently named “mTOR” (initially an 
abbreviation for “mammalian target of rapamycin,” later 
revised to “mechanistic target of rapamycin”) [67].

The mTOR kinase is a component of numerous intra-
cellular functions and is implicated in various diseases. 
The inhibition of mTOR by rapamycin or its analogues 
(“rapalogues”) has been studied as a treatment strategy 
for various cancers [68,69] (e.g., pancreatic [70], renal cell 
[71]), myopathies (e.g., mitochondrial myopathy [72], in-
flammatory myopathy [73], inclusion body myositis [74]), 
sickle cell disease [75], fragile X syndrome [76], viral pro-
phylaxis for transplant recipients [77], and possible anti-
aging effects [78,79].

Rapalogue inhibition of mTOR disrupts several mal-
adaptive processes associated with the chronification 
of pain. In murine neuropathic pain models, intrathe-
cal [80,81] or intraperitoneal [82,83] rapamycin inhibits 
astrocyte and microglial cell activation, as well as levels 
of pro-inflammatory neuropeptides including calcitonin 
gene-related peptide, substance P, and several cytokines 
(e.g., IL-1β, IL-6, TNF-α [83]). Significant mTOR activity 
has been identified in the insular cortex, dorsal root gan-
glia, and laminae I–III of the dorsal horn in murine stud-
ies [84–86], with mTOR blockade by rapalogues attenuat-
ing wind-up and mechanically-evoked potentials [85], 
thereby reducing allodynia [84], increasing the activation 
thresholds of nociceptive Aδ fibers [86], and inhibiting 
hyperalgesic priming [87]. There is also data supporting 
the role of mTOR in mediating affective components of 
pain, with murine models demonstrating improvement 
of pain behaviors with mTOR blockade [88,89].

It is noteworthy that mTOR upregulates intracellular 

signaling pathways (e.g., PI3K/Akt/mTOR) and the ex-
pression of protein kinases (e.g., PKCγ, neuronal NOS) 
associated with opioid-induced tolerance and opioid-
induced hyperalgesia (OIH) [90,91]. In murine models, 
rapamycin and other mTOR inhibitors (e.g., metformin) 
have shown efficacy for reducing morphine tolerance 
and hyperalgesia [90,92,93]. The use of rapalogues for 
treating opioid-induced tolerance and OIH has not been 
described in a clinical setting, but their utility for this 
purpose might be limited by potentially serious adverse 
effects associated with mTOR inhibition (e.g., metabolic 
dysfunction, anemia, renal failure [94]).

5) Minocycline

Minocycline is a second-generation tetracycline that has 
demonstrated the ability to reduce neuroinflammation, 
neuropathic pain, and nociceptive pain in preclinical 
studies [95] via  mechanisms independent of its anti-
microbial effects [96,97]. Minocycline inhibits central 
[98–101] and peripheral [102,103] glial cell activity and 
attenuates the release of pro-inflammatory cytokines 
such as IL-1β [104,105] and TNF [106]. There is limited 
data suggesting that minocycline might also confer an-
algesia by binding to the NR2B subunit of N-methyl-D-
aspartate (NMDA) receptors [107]. Because minocycline 
crosses the blood-brain barrier, recent focus has been on 
its potential neuroprotective effects [108,109], but clinical 
efficacy for this indication remains uncertain [110].

Numerous murine studies have demonstrated anal-
gesic benefit in a variety of mechanistic pain categories, 
including neuropathic pain (e.g., mechanical allodynia 
and hyperalgesia [105,111,112], chemotherapy-induced 
peripheral neuropathy [CIPN] [113,114], and painful 
diabetic neuropathy [107,115–117]), nociceptive pain 
[96,97,118,119] (including visceral pain [120–122]), and 
mixed pain conditions (e.g., endotoxin-induced hyper-
algesia and arthralgia [123], and cancer-associated bone 
pain [124,125]). Minocycline potentially improves affec-
tive components of pain, such as depression, anxiety, and 
fear [126–128], and older studies suggested that minocy-
cline might also prevent the development of opioid toler-
ance via glutaminergic or anti-microglial mechanisms 
[129,130].

However, clinical studies are few and have shown 
mixed results. A recent literature review identified only 
nine prospective trials assessing the analgesic efficacy 
of minocycline [131]. Three small RCTs [132–134] stud-
ied the use of minocycline for CIPN, with only one [134] 
demonstrating clinically meaningful benefit. Two RCTs 
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[135,136] assessed the efficacy of minocycline for lumbar 
radicular pain, and there was no significant benefit over 
a placebo [135] or amitriptyline [136]. One RCT of 50 par-
ticipants found benefit for painful diabetic neuropathy 
symptoms [137], and in a small pilot study in patients 
with leprosy-associated neuropathy, 9 of 11 participants 
reported improvements in sensory and motor function 
tests [138]. Minocycline did not accelerate the resolution 
of postsurgical symptoms after hand surgery in an RCT 
of 131 patients [139] and did not yield clinically mean-
ingful analgesia in a small open-label trial of 20 patients 
with neuropathic pain from heterogeneous etiologies 
(e.g., phantom limb pain, CIPN, and brachial plexopathy) 
[128]. Although minocycline appears to be safe [131], 
headaches and vestibular symptoms are common [140], 
and more studies are necessary to demonstrate whether 
minocycline has clinical utility for analgesia.

6) Dapsone

Dapsone is a sulfonamide antibiotic that was initially 
synthesized in 1908 [141] and has both antimicrobial 
and anti-inflammatory properties [142]. Dapsone is bac-
teriostatic rather than bactericidal [141], and impedes 
bacterial replication by inhibiting dihydrofolic acid 
synthesis [143]. Numerous potential anti-inflammatory 
mechanisms for dapsone have been proposed [141], such 
as the inhibition of reactive oxidants and proteases [144], 
attenuation of mast cell activity [145], and the suppres-
sion of pro-inflammatory cytokines (e.g., IL-8 [146] and 
TNF-α [147]). Although dapsone has been a treatment for 
leprosy and malaria for decades [142], recent interest has 
focused on its utility for non-infectious, inflammatory 
dermatologic conditions (e.g., dermatitis herpetiformis) 
[141,143].

Murine models have provided evidence for a neuropro-
tective effect from dapsone, which might have relevance 
for neurodegenerative and neuropathic pain conditions. 
Dapsone has demonstrated the ability to attenuate the 
development of striatal necrosis [148] and the depletion 
of gamma-aminobutyric acid levels [149] after the injec-
tion of quinolinic acid, a neurotoxic NMDA receptor 
agonist. Dapsone might prevent excessive lipid peroxida-
tion [148] or glutamate agonism [149], which was cor-
roborated by a spinal cord injury (SCI) murine model in 
which dapsone appeared to antagonize lipid peroxidase 
and normalize glutathione concentrations [150]. Nota-
bly, tactile allodynia and mechanical hyperalgesia were 
similarly improved with either early (3 hours post-injury) 
or delayed administration (15 days post-injury) of dap-

sone [150]. Other SCI murine models have shown that 
dapsone can improve neurological function by reducing 
cell apoptosis [151] and inhibiting myeloperoxidase [152], 
limiting the extent of neurological tissue damage. The 
evidence for dapsone’s effects on the peripheral nervous 
system is limited, but it appears to similarly inhibit proin-
flammatory cytokines and maintain glutathione activity, 
improving thermal and mechanical pain thresholds in a 
CIPN murine model [153].

Clinical studies have used dapsone for nociceptive pain 
conditions rather than for neuropathic pain. A placebo-
controlled trial [154] and two small comparative-effec-
tiveness trials pitting dapsone against chloroquine deriva-
tives [155,156] found dapsone to be superior to a placebo 
but not chloroquine in reducing inflammatory biomark-
ers and pain in RA. Hemolysis and hemolytic anemia 
were adverse events in all three studies, demonstrating 
a relatively poor risk-to-benefit profile. These studies 
were completed several decades ago and newer studies 
have not re-assessed the efficacy of dapsone for arthritis 
pain. More recently, dapsone has been recognized for its 
efficacy in neutrophilic urticarial dermatosis [157] and 
cutaneous lupus erythematosus (CLE) [158,159], with 
case reports demonstrating significant benefit in sub-
types including lupus erythematosus profundus [160] 
and bullous lupus erythematosus [161]. Although more 
placebo-controlled or comparative-effectiveness studies 
are needed, dapsone is now recognized as a second-line 
therapy in CLE treatment guidelines [162].

Given its antioxidant and antiapoptotic properties, 
dapsone has also demonstrated efficacy in animal mod-
els and controlled and uncontrolled human studies for 
neurodegenerative diseases frequently associated with 
central neuropathic pain and spasticity, such as Parkin-
son’s disease, Alzheimer’s disease, stroke, and epilepsy 
[163–165]. Whereas these studies have not focused on 
pain as a primary outcome, given the correlation between 
disease burden and pain symptoms for these conditions, 
future studies evaluating dapsone should consider as-
sessing pain and related quality of life measures.

It is important to recognize that dapsone is used in in-
flammatory dermatoses primarily for its immunomodu-
lating and disease-modifying effects [166] rather than for 
analgesia. In addition to hemolysis, chronic dapsone use 
is associated with peripheral neuropathy [167] (poten-
tially via paradoxical axonal toxicity [168]), methemoglo-
binemia, agranulocytosis, and dapsone hypersensitivity 
syndrome [142], a condition that can lead to fatal liver 
dysfunction [169]. Although dapsone can be safely used, 
its significant risks of toxicity require regular serum mon-
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itoring and likely preclude its use as an analgesic medica-
tion.

7) Piscidin-1

Piscidin is an antimicrobial peptide named for its natural 
occurrence in the skin and gills of various fish species 
[170]. Piscidin is produced in mucosal and epithelial cells 
[171] as well as mast cells and eosinophils [170], and like-
ly plays an important role in the immune systems of fish 
by preventing microbial colonization of the skin. While at 
least seven piscidin isoforms have been identified, all of 
which have antimicrobial and immunological functions 
[172], only piscidin-1 (PCD-1) has been reported to have 
analgesic properties [173].

In a murine CCI model, PCD-1 was found to inhibit 
the upregulation of inducible nitric oxide synthase and 
cyclooxygenase-2 in response to lipopolysaccharide 
antigen, which suggests potential efficacy for nocicep-
tive pain symptoms [173]. In addition, PCD-1 improved 
thermal hyperalgesia (increased paw withdrawal latency) 
at a magnitude of effect similar to that of gabapentin and 
increased paw withdrawal thresholds (e.g., mechanical 
allodynia). Immunohistologic examination also demon-
strated decreased dorsal horn microglial activity in the 
CCI rats that had been treated with PCD-1 compared to 
those in the control group [173]. In preclinical studies, 
PCD-1 facilitates mitochondrial dysfunction and apop-
tosis in osteosarcoma cells [174], and piscidin-4 induces 
tumor necrosis in triple-negative breast cancer cells [175].

No clinical studies to date have assessed the analgesic 
effects of PCD-1, and there is a lack of additional preclini-
cal studies confirming potential mechanisms. Given the 
limited but encouraging data available suggesting efficacy 
for nociceptive pain, neuropathic pain, and certain can-
cers, further study of PCD-1 and other piscidin isoforms 
is warranted.

5. Future research

The analgesic effects of many medications (e.g., antide-
pressants) besides antimicrobial agents have been dis-
covered serendipitously, and the exploration of these off-
target effects in the quest to develop antimicrobial agents 
has led to the development of medications used for non-
infectious conditions that share significant overlap with 
chronic pain (e.g., meprobamate for anxiety and sleep 
disorders, chlorpromazine for sleep, anxiety and psycho-
sis) [176]. However, there are several unique challenges 
in repurposing antimicrobial agents for analgesic and 

other purposes, including antibiotic stewardship (e.g., 
preventing future resistance in non-infected individuals) 
and unintended effects on the microbiome, which can 
have myriad unintended effects on the development of 
chronic pain conditions [6].

Identifying mechanisms requires preclinical studies, 
of which a substantial proportion (greater than 50% in 
some estimates) involves indirect-acting mechanisms 
such as phages or phage-derived peptides, virulence fac-
tors, antibiotic-drug conjugates, microbiome-modulating 
therapies, immunomodulators, drug potentiators, and a 
host of other non-traditional targets [177]. Unique char-
acteristics that undermine translation from animals to 
humans for antimicrobial therapy and pain should be 
addressed. For the former, these include differences in 
antimicrobial effectiveness between preclinical and clini-
cal contexts, differences in genomics, proteomics and 
metabolism between species, the need for evaluating dis-
ease-modulating properties which typically take longer 
to realize than detecting reductions in microbial popula-
tions, and difficulties in detecting long-term cytotoxic ef-
fects in non-humans, amongst others. For the latter, they 
might include finding ways to concomitantly measure the 
effects of therapy on nociception (for neuropathic and 
non-neuropathic pain) and antimicrobial activity, and 
the inherent difficulties outlined elsewhere in translating 
preclinical pain studies to humans. These include differ-
ences in the physiological properties of nociception and 
the subjective phenomenon of pain that includes affec-
tive and cognitive components, designing studies that 
account for the diversity of humans including vulnerable 
populations often excluded from clinical trials, and ad-
dressing common design flaws such as blinding, random-
ization, and small sample sizes which may fail to detect 
modest signals for analgesic properties [178].

CONCLUSIONS

Antimicrobials are not expected to have mechanistic ef-
fects on several key processes implicated in the initiation 
and propagation of chronic pain syndromes, many of 
which are autoimmune-mediated (e.g., epitope spread-
ing, molecular mimicry) [1]. Moreover, antimicrobials 
cannot reverse tissue or nerve damage that has already 
occurred from infection (e.g., vaccination remains the 
best intervention to prevent postherpetic neuralgia [179]). 
Antimicrobials should be used judiciously, and should 
not be utilized to treat pain conditions when there is no 
physiologic or mechanistic basis for efficacy. Nonethe-
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less, antimicrobials have shown surprising analgesic ef-
fects, including via numerous off-target effects on pain 
signaling. These mechanisms require further investiga-
tion in order to optimize any potential analgesic benefits 
and to understand which patient populations may most 
likely benefit.
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