과제정보
M.-J.K. is supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2022R1C1C101089811). H.L. is supported by the Basic Science Research Program, through the NRF of Korea government (MSIT) (2020R1C1C1009322). H.-J.K. is supported by Basic Science Research Program through the NRF of Korea funded by the Ministry of Education (2019R1I1A1A01062968). I.-K.L. is supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (grant No. HR22C1832).
참고문헌
- Balaban, R.S. (2009). The role of Ca2+ signaling in the coordination of mitochondrial ATP production with cardiac work. Biochim. Biophys. Acta 1787, 1334-1341. https://doi.org/10.1016/j.bbabio.2009.05.011
- Bantug, G.R., Fischer, M., Grahlert, J., Balmer, M.L., Unterstab, G., Develioglu, L., Steiner, R., Zhang, L., Costa, A.S.H., Gubser, P.M., et al. (2018). Mitochondria-endoplasmic reticulum contact sites function as immunometabolic hubs that orchestrate the rapid recall response of memory CD8+ T cells. Immunity 48, 542-555.e6. https://doi.org/10.1016/j.immuni.2018.02.012
- Bian, L., Josefsson, E., Jonsson, I.M., Verdrengh, M., Ohlsson, C., Bokarewa, M., Tarkowski, A., and Magnusson, M. (2009). Dichloroacetate alleviates development of collagen II-induced arthritis in female DBA/1 mice. Arthritis Res. Ther. 11, R132.
- Buck, M.D., O'Sullivan, D., Klein Geltink, R.I., Curtis, J.D., Chang, C.H., Sanin, D.E., Qiu, J., Kretz, O., Braas, D., van der Windt, G.J., et al. (2016). Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63-76. https://doi.org/10.1016/j.cell.2016.05.035
- Cardenas, C., Miller, R.A., Smith, I., Bui, T., Molgo, J., Muller, M., Vais, H., Cheung, K.H., Yang, J., Parker, I., et al. (2010). Essential regulation of cell bioenergetics by constitutive InsP3 receptor Ca2+ transfer to mitochondria. Cell 142, 270-283. https://doi.org/10.1016/j.cell.2010.06.007
- Cardenas, C., Muller, M., McNeal, A., Lovy, A., Jana, F., Bustos, G., Urra, F., Smith, N., Molgo, J., Diehl, J.A., et al. (2016). Selective vulnerability of cancer cells by inhibition of Ca2+ transfer from endoplasmic reticulum to mitochondria. Cell Rep. 14, 2313-2324. https://doi.org/10.1016/j.celrep.2016.02.030
- Chen, P.M., Wilson, P.C., Shyer, J.A., Veselits, M., Steach, H.R., Cui, C., Moeckel, G., Clark, M.R., and Craft, J. (2020). Kidney tissue hypoxia dictates T cell-mediated injury in murine lupus nephritis. Sci. Transl. Med. 12, eaay1620.
- Cho, D.H., Kim, J.K., and Jo, E.K. (2020). Mitophagy and innate immunity in infection. Mol. Cells 43, 10-22.
- Cho, H.M., Ryu, J.R., Jo, Y., Seo, T.W., Choi, Y.N., Kim, J.H., Chung, J.M., Cho, B., Kang, H.C., Yu, S.W., et al. (2019). Drp1-Zip1 interaction regulates mitochondrial quality surveillance system. Mol. Cell 73, 364-376.e8. https://doi.org/10.1016/j.molcel.2018.11.009
- Cogliati, S., Frezza, C., Soriano, M.E., Varanita, T., Quintana-Cabrera, R., Corrado, M., Cipolat, S., Costa, V., Casarin, A., Gomes, L.C., et al. (2013). Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 155, 160-171. https://doi.org/10.1016/j.cell.2013.08.032
- Csordas, G., Renken, C., Varnai, P., Walter, L., Weaver, D., Buttle, K.F., Balla, T., Mannella, C.A., and Hajnoczky, G. (2006). Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174, 915-921. https://doi.org/10.1083/jcb.200604016
- Deng, X., Wang, Q., Cheng, M., Chen, Y., Yan, X., Guo, R., Sun, L., Li, Y., and Liu, Y. (2020). Pyruvate dehydrogenase kinase 1 interferes with glucose metabolism reprogramming and mitochondrial quality control to aggravate stress damage in cancer. J. Cancer 11, 962-973. https://doi.org/10.7150/jca.34330
- Di Mattia, T., Wilhelm, L.P., Ikhlef, S., Wendling, C., Spehner, D., Nomine, Y., Giordano, F., Mathelin, C., Drin, G., Tomasetto, C., et al. (2018). Identification of MOSPD2, a novel scaffold for endoplasmic reticulum membrane contact sites. EMBO Rep. 19, e45453.
- Dumitru, C., Kabat, A.M., and Maloy, K.J. (2018). Metabolic adaptations of CD4+ T cells in inflammatory disease. Front. Immunol. 9, 540.
- Eleftheriadis, T., Sounidaki, M., Pissas, G., Antoniadi, G., Liakopoulos, V., and Stefanidis, I. (2016). In human alloreactive CD4+ T-cells, dichloroacetate inhibits aerobic glycolysis, induces apoptosis and favors differentiation towards the regulatory T-cell subset instead of effector T-cell subsets. Mol. Med. Rep. 13, 3370-3376. https://doi.org/10.3892/mmr.2016.4912
- Foster, D.W. (2012). Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J. Clin. Invest. 122, 1958-1959. https://doi.org/10.1172/JCI63967
- Gao, F., Reynolds, M.B., Passalacqua, K.D., Sexton, J.Z., Abuaita, B.H., and O'Riordan, M.X.D. (2021). The mitochondrial fission regulator DRP1 controls post-transcriptional regulation of TNF-alpha. Front. Cell. Infect. Microbiol. 10, 593805.
- Gergely, P., Jr., Niland, B., Gonchoroff, N., Pullmann, R., Jr., Phillips, P.E., and Perl, A. (2002). Persistent mitochondrial hyperpolarization, increased reactive oxygen intermediate production, and cytoplasmic alkalinization characterize altered IL-10 signaling in patients with systemic lupus erythematosus. J. Immunol. 169, 1092-1101. https://doi.org/10.4049/jimmunol.169.2.1092
- Gerriets, V.A., Kishton, R.J., Nichols, A.G., Macintyre, A.N., Inoue, M., Ilkayeva, O., Winter, P.S., Liu, X., Priyadharshini, B., Slawinska, M.E., et al. (2015). Metabolic programming and PDHK1 control CD4+ T cell subsets and inflammation. J. Clin. Invest. 125, 194-207. https://doi.org/10.1172/JCI76012
- Giacomello, M., Pyakurel, A., Glytsou, C., and Scorrano, L. (2020). The cell biology of mitochondrial membrane dynamics. Nat. Rev. Mol. Cell Biol. 21, 204-224. https://doi.org/10.1038/s41580-020-0210-7
- Go, Y., Jeong, J.Y., Jeoung, N.H., Jeon, J.H., Park, B.Y., Kang, H.J., Ha, C.M., Choi, Y.K., Lee, S.J., Ham, H.J., et al. (2016). Inhibition of pyruvate dehydrogenase kinase 2 protects against hepatic steatosis through modulation of tricarboxylic acid cycle anaplerosis and ketogenesis. Diabetes 65, 2876-2887. https://doi.org/10.2337/db16-0223
- Gordaliza-Alaguero, I., Canto, C., and Zorzano, A. (2019). Metabolic implications of organelle-mitochondria communication. EMBO Rep. 20, e47928.
- Harris, R.A., Bowker-Kinley, M.M., Huang, B., and Wu, P. (2002). Regulation of the activity of the pyruvate dehydrogenase complex. Adv. Enzyme Regul. 42, 249-259. https://doi.org/10.1016/S0065-2571(01)00061-9
- Honrath, B., Metz, I., Bendridi, N., Rieusset, J., Culmsee, C., and Dolga, A.M. (2017). Glucose-regulated protein 75 determines ER-mitochondrial coupling and sensitivity to oxidative stress in neuronal cells. Cell Death Discov. 3, 17076.
- Imam, T., Park, S., Kaplan, M.H., and Olson, M.R. (2018). Effector T helper cell subsets in inflammatory bowel diseases. Front. Immunol. 9, 1212.
- Iwasawa, R., Mahul-Mellier, A.L., Datler, C., Pazarentzos, E., and Grimm, S. (2011). Fis1 and Bap31 bridge the mitochondria-ER interface to establish a platform for apoptosis induction. EMBO J. 30, 556-568. https://doi.org/10.1038/emboj.2010.346
- Jeoung, N.H., Wu, P., Joshi, M.A., Jaskiewicz, J., Bock, C.B., Depaoli-Roach, A.A., and Harris, R.A. (2006). Role of pyruvate dehydrogenase kinase isoenzyme 4 (PDHK4) in glucose homoeostasis during starvation. Biochem. J. 397, 417-425. https://doi.org/10.1042/BJ20060125
- Jiang, C., Zhang, J., Xie, H., Guan, H., Li, R., Chen, C., Dong, H., Zhou, Y., and Zhang, W. (2022). Baicalein suppresses lipopolysaccharide-induced acute lung injury by regulating Drp1-dependent mitochondrial fission of macrophages. Biomed. Pharmacother. 145, 112408.
- Jun, S., Mahesula, S., Mathews, T.P., Martin-Sandoval, M.S., Zhao, Z., Piskounova, E., and Agathocleous, M. (2021). The requirement for pyruvate dehydrogenase in leukemogenesis depends on cell lineage. Cell Metab. 33, 1777-1792.e8. https://doi.org/10.1016/j.cmet.2021.07.016
- Kapetanovic, R., Afroz, S.F., Ramnath, D., Lawrence, G.M., Okada, T., Curson, J.E., de Bruin, J., Fairlie, D.P., Schroder, K., St John, J.C., et al. (2020). Lipopolysaccharide promotes Drp1-dependent mitochondrial fission and associated inflammatory responses in macrophages. Immunol. Cell Biol. 98, 528-539. https://doi.org/10.1111/imcb.12363
- Khodzhaeva, V., Schreiber, Y., Geisslinger, G., Brandes, R.P., Brune, B., and Namgaladze, D. (2021). Mitofusin 2 deficiency causes pro-inflammatory effects in human primary macrophages. Front. Immunol. 12, 723683.
- Kono, M., Yoshida, N., Maeda, K., Skinner, N.E., Pan, W., Kyttaris, V.C., Tsokos, M.G., and Tsokos, G.C. (2018). Pyruvate dehydrogenase phosphatase catalytic subunit 2 limits Th17 differentiation. Proc. Natl. Acad. Sci. U. S. A. 115, 9288-9293. https://doi.org/10.1073/pnas.1805717115
- Lee, H., Jeon, J.H., Lee, Y.J., Kim, M.J., Kwon, W.H., Chanda, D., Thoudam, T., Pagire, H.S., Pagire, S.H., Ahn, J.H., et al. (2023). Inhibition of pyruvate dehydrogenase kinase 4 in CD4+ T cells ameliorates intestinal inflammation. Cell. Mol. Gastroenterol. Hepatol. 15, 439-461. https://doi.org/10.1016/j.jcmgh.2022.09.016
- Lin, H.C., Chen, Y.J., Wei, Y.H., Lin, H.A., Chen, C.C., Liu, T.F., Hsieh, Y.L., Huang, K.Y., Lin, K.H., Wang, H.H., et al. (2021). Lactic acid fermentation is required for NLRP3 inflammasome activation. Front. Immunol. 12, 630380.
- Makita, N., Ishiguro, J., Suzuki, K., and Nara, F. (2017). Dichloroacetate induces regulatory T-cell differentiation and suppresses Th17-cell differentiation by pyruvate dehydrogenase kinase-independent mechanism. J. Pharm. Pharmacol. 69, 43-51. https://doi.org/10.1111/jphp.12655
- Martinez-Reyes, I. and Chandel, N.S. (2020). Mitochondrial TCA cycle metabolites control physiology and disease. Nat. Commun. 11, 102.
- Menk, A.V., Scharping, N.E., Moreci, R.S., Zeng, X., Guy, C., Salvatore, S., Bae, H., Xie, J., Young, H.A., Wendell, S.G., et al. (2018). Early TCR signaling induces rapid aerobic glycolysis enabling distinct acute T cell effector functions. Cell Rep. 22, 1509-1521. https://doi.org/10.1016/j.celrep.2018.01.040
- Min, B.K., Park, S., Kang, H.J., Kim, D.W., Ham, H.J., Ha, C.M., Choi, B.J., Lee, J.Y., Oh, C.J., Yoo, E.K., et al. (2019). Pyruvate dehydrogenase kinase is a metabolic checkpoint for polarization of macrophages to the M1 phenotype. Front. Immunol. 10, 944.
- Na, Y.R., Jung, D., Song, J., Park, J.W., Hong, J.J., and Seok, S.H. (2020). Pyruvate dehydrogenase kinase is a negative regulator of interleukin-10 production in macrophages. J. Mol. Cell Biol. 12, 543-555. https://doi.org/10.1093/jmcb/mjz113
- Orvedahl, A., Sumpter, R., Jr., Xiao, G., Ng, A., Zou, Z., Tang, Y., Narimatsu, M., Gilpin, C., Sun, Q., Roth, M., et al. (2011). Image-based genome-wide siRNA screen identifies selective autophagy factors. Nature 480, 113-117. https://doi.org/10.1038/nature10546
- Ostroukhova, M., Goplen, N., Karim, M.Z., Michalec, L., Guo, L., Liang, Q., and Alam, R. (2012). The role of low-level lactate production in airway inflammation in asthma. Am. J. Physiol. Lung Cell. Mol. Physiol. 302, L300-L307. https://doi.org/10.1152/ajplung.00221.2011
- Paillard, M., Tubbs, E., Thiebaut, P.A., Gomez, L., Fauconnier, J., Da Silva, C.C., Teixeira, G., Mewton, N., Belaidi, E., Durand, A., et al. (2013). Depressing mitochondria-reticulum interactions protects cardiomyocytes from lethal hypoxia-reoxygenation injury. Circulation 128, 1555-1565. https://doi.org/10.1161/CIRCULATIONAHA.113.001225
- Pajuelo-Reguera, D., Alan, L., Olejar, T., and Jezek, P. (2015). Dichloroacetate stimulates changes in the mitochondrial network morphology via partial mitophagy in human SH-SY5Y neuroblastoma cells. Int. J. Oncol. 46, 2409-2418. https://doi.org/10.3892/ijo.2015.2953
- Palikaras, K., Lionaki, E., and Tavernarakis, N. (2018). Mechanisms of mitophagy in cellular homeostasis, physiology and pathology. Nat. Cell Biol. 20, 1013-1022. https://doi.org/10.1038/s41556-018-0176-2
- Palsson-McDermott, E.M. and O'Neill, L.A.J. (2020). Targeting immunometabolism as an anti-inflammatory strategy. Cell Res. 30, 300-314. https://doi.org/10.1038/s41422-020-0291-z
- Park, B.Y., Jeon, J.H., Go, Y., Ham, H.J., Kim, J.E., Yoo, E.K., Kwon, W.H., Jeoung, N.H., Jeon, Y.H., Koo, S.H., et al. (2018a). PDK4 deficiency suppresses hepatic glucagon signaling by decreasing cAMP levels. Diabetes 67, 2054-2068. https://doi.org/10.2337/db17-1529
- Park, S., Choi, S.G., Yoo, S.M., Nah, J., Jeong, E., Kim, H., and Jung, Y.K. (2015). Pyruvate stimulates mitophagy via PINK1 stabilization. Cell. Signal. 27, 1824-1830. https://doi.org/10.1016/j.cellsig.2015.05.020
- Park, S., Jeon, J.H., Min, B.K., Ha, C.M., Thoudam, T., Park, B.Y., and Lee, I.K. (2018b). Role of the pyruvate dehydrogenase complex in metabolic remodeling: differential pyruvate dehydrogenase complex functions in metabolism. Diabetes Metab. J. 42, 270-281. https://doi.org/10.4093/dmj.2018.0101
- Patel, M.S., Nemeria, N.S., Furey, W., and Jordan, F. (2014). The pyruvate dehydrogenase complexes: structure-based function and regulation. J. Biol. Chem. 289, 16615-16623. https://doi.org/10.1074/jbc.R114.563148
- Picca, A., Mankowski, R.T., Burman, J.L., Donisi, L., Kim, J.S., Marzetti, E., and Leeuwenburgh, C. (2018). Mitochondrial quality control mechanisms as molecular targets in cardiac ageing. Nat. Rev. Cardiol. 15, 543-554. https://doi.org/10.1038/s41569-018-0059-z
- Ramstead, A.G., Wallace, J.A., Lee, S.H., Bauer, K.M., Tang, W.W., Ekiz, H.A., Lane, T.E., Cluntun, A.A., Bettini, M.L., Round, J.L., et al. (2020). Mitochondrial pyruvate carrier 1 promotes peripheral T Cell homeostasis through metabolic regulation of thymic development. Cell Rep. 30, 2889-2899.e6. https://doi.org/10.1016/j.celrep.2020.02.042
- Rizzuto, R., Pinton, P., Carrington, W., Fay, F.S., Fogarty, K.E., Lifshitz, L.M., Tuft, R.A., and Pozzan, T. (1998). Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280, 1763-1766. https://doi.org/10.1126/science.280.5370.1763
- Shi, G. and McQuibban, G.A. (2017). The mitochondrial rhomboid protease PARL is regulated by PDK2 to integrate mitochondrial quality control and metabolism. Cell Rep. 18, 1458-1472. https://doi.org/10.1016/j.celrep.2017.01.029
- Shi, L.Z., Wang, R., Huang, G., Vogel, P., Neale, G., Green, D.R., and Chi, H. (2011). HIF1alpha-dependent glycolytic pathway orchestrates a metabolic checkpoint for the differentiation of TH17 and Treg cells. J. Exp. Med. 208, 1367-1376. https://doi.org/10.1084/jem.20110278
- Simula, L., Pacella, I., Colamatteo, A., Procaccini, C., Cancila, V., Bordi, M., Tregnago, C., Corrado, M., Pigazzi, M., Barnaba, V., et al. (2018). Drp1 controls effective T cell immune-surveillance by regulating T cell migration, proliferation, and cMyc-dependent metabolic reprogramming. Cell Rep. 25, 3059-3073.e10. https://doi.org/10.1016/j.celrep.2018.11.018
- Spinelli, J.B. and Haigis, M.C. (2018). The multifaceted contributions of mitochondria to cellular metabolism. Nat. Cell Biol. 20, 745-754. https://doi.org/10.1038/s41556-018-0124-1
- Srinivasan, S., Guha, M., Kashina, A., and Avadhani, N.G. (2017). Mitochondrial dysfunction and mitochondrial dynamics-the cancer connection. Biochim. Biophys. Acta Bioenerg. 1858, 602-614. https://doi.org/10.1016/j.bbabio.2017.01.004
- Szabadkai, G., Bianchi, K., Varnai, P., De Stefani, D., Wieckowski, M.R., Cavagna, D., Nagy, A.I., Balla, T., and Rizzuto, R. (2006). Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J. Cell Biol. 175, 901-911. https://doi.org/10.1083/jcb.200608073
- Tan, Z., Xie, N., Cui, H., Moellering, D.R., Abraham, E., Thannickal, V.J., and Liu, G. (2015). Pyruvate dehydrogenase kinase 1 participates in macrophage polarization via regulating glucose metabolism. J. Immunol. 194, 6082-6089. https://doi.org/10.4049/jimmunol.1402469
- Theurey, P., Tubbs, E., Vial, G., Jacquemetton, J., Bendridi, N., Chauvin, M.A., Alam, M.R., Le Romancer, M., Vidal, H., and Rieusset, J. (2016). Mitochondria-associated endoplasmic reticulum membranes allow adaptation of mitochondrial metabolism to glucose availability in the liver. J. Mol. Cell Biol. 8, 129-143. https://doi.org/10.1093/jmcb/mjw004
- Thoudam, T., Chanda, D., Sinam, I.S., Kim, B.G., Kim, M.J., Oh, C.J., Lee, J.Y., Kim, M.J., Park, S.Y., Lee, S.Y., et al. (2022). Noncanonical PDK4 action alters mitochondrial dynamics to affect the cellular respiratory status. Proc. Natl. Acad. Sci. U. S. A. 119, e2120157119.
- Thoudam, T., Ha, C.M., Leem, J., Chanda, D., Park, J.S., Kim, H.J., Jeon, J.H., Choi, Y.K., Liangpunsakul, S., Huh, Y.H., et al. (2019). PDK4 augments ER-mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes 68, 571-586. https://doi.org/10.2337/db18-0363
- Tilstra, J.S., Avery, L., Menk, A.V., Gordon, R.A., Smita, S., Kane, L.P., Chikina, M., Delgoffe, G.M., and Shlomchik, M.J. (2018). Kidney-infiltrating T cells in murine lupus nephritis are metabolically and functionally exhausted. J. Clin. Invest. 128, 4884-4897. https://doi.org/10.1172/JCI120859
- Tsokos, G.C. (2011). Systemic lupus erythematosus. N. Engl. J. Med. 365, 2110-2121. https://doi.org/10.1056/NEJMra1100359
- Tubbs, E., Theurey, P., Vial, G., Bendridi, N., Bravard, A., Chauvin, M.A., Ji-Cao, J., Zoulim, F., Bartosch, B., Ovize, M., et al. (2014). Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes 63, 3279-3294. https://doi.org/10.2337/db13-1751
- Yin, Y., Choi, S.C., Xu, Z., Perry, D.J., Seay, H., Croker, B.P., Sobel, E.S., Brusko, T.M., and Morel, L. (2015). Normalization of CD4+ T cell metabolism reverses lupus. Sci. Transl. Med. 7, 274ra218.
- Yin, Y., Choi, S.C., Xu, Z., Zeumer, L., Kanda, N., Croker, B.P., and Morel, L. (2016). Glucose oxidation is critical for CD4+ T cell activation in a mouse model of systemic lupus erythematosus. J. Immunol. 196, 80-90. https://doi.org/10.4049/jimmunol.1501537
- Yu, S.B. and Pekkurnaz, G. (2018). Mechanisms orchestrating mitochondrial dynamics for energy homeostasis. J. Mol. Biol. 430, 3922-3941. https://doi.org/10.1016/j.jmb.2018.07.027