DOI QR코드

DOI QR Code

Immunostaining patterns reveal potential morphogenetic role of Toll-like receptors 4 and 7 in the development of mouse respiratory system, liver and pancreas

  • Michele Sommariva (Department of Biomedical Health for Science, Universita degli Sudi di Milano) ;
  • Marco Busnelli (Department of Pharmacological and Biomolecular Sciences, Universita degli Sudi di Milano) ;
  • Elena Menegola (Department of Environmental Science and Policy, Universita degli Sudi di Milano) ;
  • Francesca Di Renzo (Department of Environmental Science and Policy, Universita degli Sudi di Milano) ;
  • Serena Indino (Department of Biomedical Health for Science, Universita degli Sudi di Milano) ;
  • Alessandra Menon (Department of Biomedical Health for Science, Universita degli Sudi di Milano) ;
  • Isabella Barajon (Humanitas University) ;
  • Francesca Arnaboldi (Department of Biomedical Health for Science, Universita degli Sudi di Milano)
  • Received : 2022.11.04
  • Accepted : 2022.12.30
  • Published : 2023.06.30

Abstract

Toll-like receptors (TLRs) are the mammalian ortholog of Drosophila melanogaster protein Toll, originally identified for its involvement in embryonic development. In mammals, TLRs are mainly known for their ability to recognize pathogen- or damage-associated molecular patterns and, consequently, to initiate the immune response. However, it is becoming clear that TLRs can play a role also in mammal embryo development. We have previously described TLR4 and TLR7 expression in developing mouse peripheral nervous system and gastrointestinal tract. In the present study, we extended the investigation of TLR4 and TLR7 to the respiratory system and to the two main accessory organs of the digestive system, the liver and pancreas. TLR4 and TLR7 immunostaining was performed on mouse conceptuses collected at different stages, from E12 to E18. TLR4 and TLR7 immunoreactivity was evident in the embryo pancreas and liver at E12, while, in the respiratory apparatus, appeared at E14 and E17, respectively. Although further studies are required to elucidate the specific role of these TLRs in embryo development, the differential spatiotemporal TLR4 and TLR7 appearance may suggest that TLR expression in developing embryos is highly regulated for a possible their direct involvement in the formation of the organs and in the acquisition of immune-related features in preparation for the birth.

Keywords

References

  1. Vijay K. Toll-like receptors in immunity and inflammatory diseases: past, present, and future. Int Immunopharmacol 2018;59:391-412. Erratum in: Int Immunopharmacol 2018;62:338.
  2. Fitzgerald KA, Kagan JC. Toll-like receptors and the control of immunity. Cell 2020;180:1044-66.
  3. Parker LC, Prince LR, Sabroe I. Translational mini-review series on Toll-like receptors: networks regulated by Toll-like receptors mediate innate and adaptive immunity. Clin Exp Immunol 2007;147:199-207.
  4. Zindel J, Kubes P. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation. Annu Rev Pathol 2020;15:493-518.
  5. Chaturvedi A, Pierce SK. How location governs toll-like receptor signaling. Traffic 2009;10:621-8.
  6. Ciesielska A, Matyjek M, Kwiatkowska K. TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling. Cell Mol Life Sci 2021;78:1233-61.
  7. Tojo S, Zhang Z, Matsui H, Tahara M, Ikeguchi M, Kochi M, Kamada M, Shigematsu H, Tsutsumi A, Adachi N, Shibata T, Yamamoto M, Kikkawa M, Senda T, Isobe Y, Ohto U, Shimizu T. Structural analysis reveals TLR7 dynamics underlying antagonism. Nat Commun 2020;11:5204.
  8. Anthoney N, Foldi I, Hidalgo A. Toll and Toll-like receptor signalling in development. Development 2018;145:dev156018.
  9. Barak B, Feldman N, Okun E. Toll-like receptors as developmental tools that regulate neurogenesis during development: an update. Front Neurosci 2014;8:272.
  10. Kannaki TR, Reddy MR, Verma PC, Shanmugam M. Differential Toll-like receptor (TLR) mRNA expression patterns during chicken embryological development. Anim Biotechnol 2015;26:130-5.
  11. Awasthi S, Cropper J, Brown KM. Developmental expression of Toll-like receptors-2 and -4 in preterm baboon lung. Dev Comp Immunol 2008;32:1088-98.
  12. Harju K, Glumoff V, Hallman M. Ontogeny of Toll-like receptors Tlr2 and Tlr4 in mice. Pediatr Res 2001;49:81-3.
  13. Meyerholz DK, Kawashima K, Gallup JM, Grubor B, Ackermann MR. Expression of select immune genes (surfactant proteins A and D, sheep beta defensin 1, and toll-like receptor 4) by respiratory epithelia is developmentally regulated in the preterm neonatal lamb. Dev Comp Immunol 2006;30:1060-9.
  14. Arnaboldi F, Sommariva M, Opizzi E, Rasile M, Camelliti S, Busnelli M, Menegola E, Di Renzo F, Menon A, Barajon I. Expression of Toll-like receptors 4 and 7 in murine peripheral nervous system development. Ann Anat 2020;231:151526.
  15. Vaure C, Liu Y. A comparative review of toll-like receptor 4 expression and functionality in different animal species. Front Immunol 2014;5:316.
  16. Petes C, Odoardi N, Gee K. The Toll for trafficking: Toll-like receptor 7 delivery to the endosome. Front Immunol 2017;8:1075.
  17. Kaufman MH. The atlas of mouse development. Academic Press; 1992.
  18. Barajon I, Serrao G, Arnaboldi F, Opizzi E, Ripamonti G, Balsari A, Rumio C. Toll-like receptors 3, 4, and 7 are expressed in the enteric nervous system and dorsal root ganglia. J Histochem Cytochem 2009;57:1013-23.
  19. Arnaboldi F, Menon A, Menegola E, Di Renzo F, Mirandola L, Grizzi F, Figueroa JA, Cobos E, Jenkins M, Barajon I, ChirivaInternati M. Sperm protein 17 is an oncofetal antigen: a lesson from a murine model. Int Rev Immunol 2014;33:367-74.
  20. Busnelli M, Manzini S, Bonacina F, Soldati S, Barbieri SS, Amadio P, Sandrini L, Arnaboldi F, Donetti E, Laaksonen R, Paltrinieri S, Scanziani E, Chiesa G. Fenretinide treatment accelerates atherosclerosis development in apoE-deficient mice in spite of beneficial metabolic effects. Br J Pharmacol 2020;177:328-45.
  21. Grapin-Botton A, Melton DA. Endoderm development: from patterning to organogenesis. Trends Genet 2000;16:124-30.
  22. McGettrick AF, O'Neill LA. Toll-like receptors: key activators of leucocytes and regulator of haematopoiesis. Br J Haematol 2007;139:185-93.
  23. Sioud M, Floisand Y, Forfang L, Lund-Johansen F. Signaling through toll-like receptor 7/8 induces the differentiation of human bone marrow CD34+ progenitor cells along the myeloid lineage. J Mol Biol 2006;364:945-54.
  24. Capitano ML. Toll-like receptor signaling in hematopoietic stem and progenitor cells. Curr Opin Hematol 2019;26:207-13.
  25. Gittes GK. Developmental biology of the pancreas: a comprehensive review. Dev Biol 2009;326:4-35.
  26. El-Zayat SR, Sibaii H, Mannaa FA. Toll-like receptors activation, signaling, and targeting: an overview. Bull Natl Res Cent 2019;43:187.
  27. Lisboa RA, Andrade MV, Cunha-Melo JR. Toll-like receptor activation and mechanical force stimulation promote the secretion of matrix metalloproteinases 1, 3 and 10 of human periodontal fibroblasts via p38, JNK and NF-kB. Arch Oral Biol 2013;58:731-9.
  28. Li H, Xu H, Liu S. Toll-like receptors 4 induces expression of matrix metalloproteinase-9 in human aortic smooth muscle cells. Mol Biol Rep 2011;38:1419-23.
  29. Song GG, Kim JH, Lee YH. Toll-like receptor (TLR) and matrix metalloproteinase (MMP) polymorphisms and periodontitis susceptibility: a meta-analysis. Mol Biol Rep 2013;40:5129-41.
  30. Iozzo RV, Schaefer L. Proteoglycans in health and disease: novel regulatory signaling mechanisms evoked by the small leucine-rich proteoglycans. FEBS J 2010;277:3864-75.
  31. Kim SK, Hebrok M. Intercellular signals regulating pancreas development and function. Genes Dev 2001;15:111-27.
  32. Condon JC, Jeyasuria P, Faust JM, Mendelson CR. Surfactant protein secreted by the maturing mouse fetal lung acts as a hormone that signals the initiation of parturition. Proc Natl Acad Sci U S A 2004;101:4978-83.
  33. Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M. Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol 2002;168:5989-92.
  34. Valanne S, Wang JH, Ramet M. The Drosophila Toll signaling pathway. J Immunol 2011;186:649-56.
  35. Leulier F, Lemaitre B. Toll-like receptors--taking an evolutionary approach. Nat Rev Genet 2008;9:165-78.
  36. Rose D, Chiba A. A single growth cone is capable of integrating simultaneously presented and functionally distinct molecular cues during target recognition. J Neurosci 1999;19:4899-906.
  37. Rose D, Zhu X, Kose H, Hoang B, Cho J, Chiba A. Toll, a muscle cell surface molecule, locally inhibits synaptic initiation of the RP3 motoneuron growth cone in Drosophila. Development 1997;124:1561-71.
  38. Ritzenthaler S, Suzuki E, Chiba A. Postsynaptic filopodia in muscle cells interact with innervating motoneuron axons. Nat Neurosci 2000;3:1012-7.
  39. Bronner ME, LeDouarin NM. Development and evolution of the neural crest: an overview. Dev Biol 2012;366:2-9.
  40. Chen CY, Shih YC, Hung YF, Hsueh YP. Beyond defense: regulation of neuronal morphogenesis and brain functions via Toll-like receptors. J Biomed Sci 2019;26:90.
  41. Hung YF, Chen CY, Shih YC, Liu HY, Huang CM, Hsueh YP. Endosomal TLR3, TLR7, and TLR8 control neuronal morphology through different transcriptional programs. J Cell Biol 2018;217:2727-42.
  42. Borghi E, Massa V, Severgnini M, Fazio G, Avagliano L, Menegola E, Bulfamante GP, Morace G, Borgo F. Antenatal microbial colonization of mammalian gut. Reprod Sci 2019;26:1045-53.
  43. La Flamme AC, Milling S. Immunological partners: the gut microbiome in homeostasis and disease. Immunology 2020;161:1-3.
  44. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020;30:492-506.
  45. Sommariva M, Le Noci V, Bianchi F, Camelliti S, Balsari A, Tagliabue E, Sfondrini L. The lung microbiota: role in maintaining pulmonary immune homeostasis and its implications in cancer development and therapy. Cell Mol Life Sci 2020;77:2739-49.
  46. Le Noci V, Bernardo G, Bianchi F, Tagliabue E, Sommariva M, Sfondrini L. Toll like receptors as sensors of the tumor microbial dysbiosis: implications in cancer progression. Front Cell Dev Biol 2021;9:732192.
  47. Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, Mohan N, Aykut B, Usyk M, Torres LE, Werba G, Zhang K, Guo Y, Li Q, Akkad N, Lall S, Wadowski B, Gutierrez J, Kochen Rossi JA, Herzog JW, Diskin B, Torres-Hernandez A, Leinwand J, Wang W, Taunk PS, Savadkar S, Janal M, Saxena A, Li X, Cohen D, Sartor RB, Saxena D, Miller G. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov 2018;8:403-16. Erratum in: Cancer Discov 2020;10:1988.
  48. Spiljar M, Merkler D, Trajkovski M. The immune system bridges the gut microbiota with systemic energy homeostasis: focus on TLRs, mucosal barrier, and SCFAs. Front Immunol 2017;8:1353.