DOI QR코드

DOI QR Code

Tree of life: endothelial cell in norm and disease, the good guy is a partner in crime!

  • Received : 2022.09.29
  • Accepted : 2023.01.25
  • Published : 2023.06.30

Abstract

Undeniably, endothelial cells (EC) contribute to the maintenance of the homeostasis of the organism through modulating cellular physiology, including signaling pathways, through the release of highly active molecules as well as the response to a myriad of extrinsic and intrinsic signaling factors. Review the data from the current literature on the EC role in norm and disease. Endothelium maintains a precise balance between the released molecules, where EC dysfunction arises when the endothelium actions shift toward vasoconstriction, the proinflammatory, prothrombic properties after the alteration of nitric oxide (NO) production and oxidative stress. The functions of the EC are regulated by the negative/positive feedback from the organism, through EC surface receptors, and the crosstalk between NO, adrenergic receptors, and oxidative stress. More than a hundred substances can interact with EC. The EC dysfunction is a hallmark in the emergence and progression of vascular-related pathologies. The paper concisely reviews recent advances in EC (patho) physiology. Grasping EC physiology is crucial to gauge their potential clinical utility and optimize the current therapies as well as to establish novel nanotherapeutic molecular targets include; endothelial receptors, cell adhesion molecules, integrins, signaling pathways, enzymes; peptidases.

Keywords

References

  1. Bierhansl L, Conradi LC, Treps L, Dewerchin M, Carmeliet P. Central role of metabolism in endothelial cell function and vascular disease. Physiology (Bethesda) 2017;32:126-40. https://doi.org/10.1152/physiol.00031.2016
  2. Khan S, Taverna F, Rohlenova K, Treps L, Geldhof V, de Rooij L, Sokol L, Pircher A, Conradi LC, Kalucka J, Schoonjans L, Eelen G, Dewerchin M, Karakach T, Li X, Goveia J, Carmeliet P. EndoDB: a database of endothelial cell transcriptomics data. Nucleic Acids Res 2019;47(D1):D736-44. https://doi.org/10.1093/nar/gky997
  3. Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I. The vascular endothelium and human diseases. Int J Biol Sci 2013;9:1057-69. https://doi.org/10.7150/ijbs.7502
  4. Baselet B, Sonveaux P, Baatout S, Aerts A. Pathological effects of ionizing radiation: endothelial activation and dysfunction. Cell Mol Life Sci 2019;76:699-728. https://doi.org/10.1007/s00018-018-2956-z
  5. Zhang J, Tecson KM, McCullough PA. Role of endothelial cell receptors in the context of SARS-CoV-2 infection (COVID-19). Proc (Bayl Univ Med Cent) 2021;34:262-8. https://doi.org/10.1080/08998280.2021.1874231
  6. Feletou M. The endothelium: part 1: multiple functions of the endothelial cells-focus on endothelium-derived vasoactive mediators. Colloq Ser Integr Syst Physiol 2011;3:1-306.
  7. Tian D, Teng X, Jin S, Chen Y, Xue H, Xiao L, Wu Y. Endogenous hydrogen sulfide improves vascular remodeling through PPARδ/SOCS3 signaling. J Adv Res 2020;27:115-25. https://doi.org/10.1016/j.jare.2020.06.005
  8. Shuvaev VV, Brenner JS, Muzykantov VR. Targeted endothelial nanomedicine for common acute pathological conditions. J Control Release 2015;219:576-95. https://doi.org/10.1016/j.jconrel.2015.09.055
  9. Jambusaria A, Hong Z, Zhang L, Srivastava S, Jana A, Toth PT, Dai Y, Malik AB, Rehman J. Endothelial heterogeneity across distinct vascular beds during homeostasis and inflammation. Elife 2020;9:e51413.
  10. Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 2009;6:16-26. https://doi.org/10.1038/ncpcardio1397
  11. Marzoog BA, Vlasova TI. The metabolic syndrome puzzles; possible pathogenesis and management. Curr Diabetes Rev 2022 Apr 29 [Epub]. https://doi.org/10.2174/1573399818666220429100411.
  12. Marzoog BA. Recent advances in molecular biology of metabolic syndrome pathophysiology: endothelial dysfunction as a potential therapeutic target. J Diabetes Metab Disord 2022;21:1903-11. https://doi.org/10.1007/s40200-022-01088-y
  13. Marzoog B. Lipid behavior in metabolic syndrome pathophysiology. Curr Diabetes Rev 2022;18:e150921196497.
  14. Thakore P, Earley S. Transient receptor potential channels and endothelial cell calcium signaling. Compr Physiol 2019;9:1249-77. https://doi.org/10.1002/cphy.c180034
  15. Dalal PJ, Muller WA, Sullivan DP. Endothelial cell calcium signaling during barrier function and inflammation. Am J Pathol 2020;190:535-42. https://doi.org/10.1016/j.ajpath.2019.11.004
  16. Evans CE, Iruela-Arispe ML, Zhao YY. Mechanisms of endothelial regeneration and vascular repair and their application to regenerative medicine. Am J Pathol 2021;191:52-65. https://doi.org/10.1016/j.ajpath.2020.10.001
  17. Hu Y, Chen M, Wang M, Li X. Flow-mediated vasodilation through mechanosensitive G protein-coupled receptors in endothelial cells. Trends Cardiovasc Med 2022;32:61-70. https://doi.org/10.1016/j.tcm.2020.12.010
  18. Pernomian L, do Prado AF, Silva BR, de Paula TD, Grando MD, Bendhack LM. C-type natriuretic peptide-induced relaxation through cGMP-dependent protein kinase and SERCA activation is impaired in two kidney-one clip rat aorta. Life Sci 2021;272:119223.
  19. Wettschureck N, Strilic B, Offermanns S. Passing the vascular barrier: endothelial signaling processes controlling extravasation. Physiol Rev 2019;99:1467-525. https://doi.org/10.1152/physrev.00037.2018
  20. Motawe ZY, Abdelmaboud SS, Breslin JW. Involvement of sigma receptor-1 in lymphatic endothelial barrier integrity and bioenergetic regulation. Lymphat Res Biol 2021;19:231-9. https://doi.org/10.1089/lrb.2020.0060
  21. Frees A, Assersen KB, Jensen M, Hansen PBL, Vanhoutte PM, Madsen K, Federlein A, Lund L, Toft A, Jensen BL. Natriuretic peptides relax human intrarenal arteries through natriuretic peptide receptor type-A recapitulated by soluble guanylyl cyclase agonists. Acta Physiol (Oxf) 2021;231:e13565.
  22. Tao BB, Liu SY, Zhang CC, Fu W, Cai WJ, Wang Y, Shen Q, Wang MJ, Chen Y, Zhang LJ, Zhu YZ, Zhu YC. VEGFR2 functions as an H2S-targeting receptor protein kinase with its novel Cys1045-Cys1024 disulfide bond serving as a specific molecular switch for hydrogen sulfide actions in vascular endothelial cells. Antioxid Redox Signal 2013;19:448-64. https://doi.org/10.1089/ars.2012.4565
  23. Xiao L, Dong JH, Teng X, Jin S, Xue HM, Liu SY, Guo Q, Shen W, Ni XC, Wu YM. Hydrogen sulfide improves endothelial dysfunction in hypertension by activating peroxisome proliferator-activated receptor delta/endothelial nitric oxide synthase signaling. J Hypertens 2018;36:651-65. https://doi.org/10.1097/HJH.0000000000001605
  24. Zuccolo E, Laforenza U, Negri S, Botta L, Berra-Romani R, Faris P, Scarpellino G, Forcaia G, Pellavio G, Sancini G, Moccia F. Muscarinic M5 receptors trigger acetylcholine-induced Ca2+ signals and nitric oxide release in human brain microvascular endothelial cells. J Cell Physiol 2019;234:4540-62. https://doi.org/10.1002/jcp.27234
  25. Berra-Romani R, Faris P, Pellavio G, Orgiu M, Negri S, Forcaia G, Var-Gaz-Guadarrama V, Garcia-Carrasco M, Botta L, Sancini G, Laforenza U, Moccia F. Histamine induces intracellular Ca2+ oscillations and nitric oxide release in endothelial cells from brain microvascular circulation. J Cell Physiol 2020;235:1515-30. https://doi.org/10.1002/jcp.29071
  26. Wishart DS, Feunang YD, Guo AC, Lo EJ, Marcu A, Grant JR, Sajed T, Johnson D, Li C, Sayeeda Z, Assempour N, Iynkkaran I, Liu Y, Maciejewski A, Gale N, Wilson A, Chin L, Cummings R, Le D, Pon A, Knox C, Wilson M. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 2018;46(D1):D1074-82. https://doi.org/10.1093/nar/gkx1037
  27. Tao BB, Cai WJ, Zhu YC. H2S is a promoter of angiogenesis: identification of H2S "receptors" and its molecular switches in vascular endothelial cells. Handb Exp Pharmacol 2015;230:137-52. https://doi.org/10.1007/978-3-319-18144-8_6
  28. Davenport AP, Hyndman KA, Dhaun N, Southan C, Kohan DE, Pollock JS, Pollock DM, Webb DJ, Maguire JJ. Endothelin. Pharmacol Rev 2016;68:357-418. https://doi.org/10.1124/pr.115.011833
  29. Maguire JJ, Davenport AP. Endothelin receptors and their antagonists. Semin Nephrol 2015;35:125-36. https://doi.org/10.1016/j.semnephrol.2015.02.002
  30. Kowalczyk A, Kleniewska P, Kolodziejczyk M, Skibska B, Goraca A. The role of endothelin-1 and endothelin receptor antagonists in inflammatory response and sepsis. Arch Immunol Ther Exp (Warsz) 2015;63:41-52. https://doi.org/10.1007/s00005-014-0310-1
  31. Abdullah Marzoog B. Adaptive and compensatory mechanisms of the cardiovascular system and disease risk factors in young males and females. New Emir Med J 2023;4:e281122211293.
  32. Marzoog BA. Endothelial cell autophagy in the context of disease development. Anat Cell Biol 2022 Oct 21 [Epub]. https:// doi.org/10.5115/acb.22.098.
  33. Motegi S. Endothelin. In: Takehara K, Fujimoto M, Kuwana M, editors. Systemic Sclerosis. Springer; 2016. p.155-71.
  34. Schiffrin EL. Does endothelin-1 raise or lower blood pressure in humans? Nephron 2018;139:47-50. https://doi.org/10.1159/000487346
  35. Houde M, Desbiens L, D'Orleans-Juste P. Endothelin-1: biosynthesis, signaling and vasoreactivity. Adv Pharmacol 2016;77:143-75. https://doi.org/10.1016/bs.apha.2016.05.002
  36. Sousa J, Diniz C. Vascular sympathetic neurotransmission and endothelial dysfunction. In: Lenasi H, editor. Endothelial Dysfunction. IntechOpen; 2018.
  37. Conti V, Russomanno G, Corbi G, Izzo V, Vecchione C, Filippelli A. Adrenoreceptors and nitric oxide in the cardiovascular system. Front Physiol 2013;4:321.
  38. Vanhoutte PM, Shimokawa H, Feletou M, Tang EH. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017;219:22-96. https://doi.org/10.1111/apha.12646
  39. Iring A, Jin YJ, Albarran-Juarez J, Siragusa M, Wang S, Dancs PT, Nakayama A, Tonack S, Chen M, Kunne C, Sokol AM, Gunther S, Martinez A, Fleming I, Wettschureck N, Graumann J, Weinstein LS, Offermanns S. Shear stress-induced endothelial adrenomedullin signaling regulates vascular tone and blood pressure. J Clin Invest 2019;129:2775-91. https://doi.org/10.1172/JCI123825
  40. Voors AA, Kremer D, Geven C, Ter Maaten JM, Struck J, Bergmann A, Pickkers P, Metra M, Mebazaa A, Dungen HD, Butler J. Adrenomedullin in heart failure: pathophysiology and therapeutic application. Eur J Heart Fail 2019;21:163-71. https://doi.org/10.1002/ejhf.1366
  41. Li X, Sun X, Carmeliet P. Hallmarks of endothelial cell metabolism in health and disease. Cell Metab 2019;30:414-33. https://doi.org/10.1016/j.cmet.2019.08.011
  42. Vestweber D. Vascular endothelial protein tyrosine phosphatase regulates endothelial function. Physiology (Bethesda) 2021;36:84-93. https://doi.org/10.1152/physiol.00026.2020
  43. Randi AM, Smith KE, Castaman G. von Willebrand factor regulation of blood vessel formation. Blood 2018;132:132-40. https://doi.org/10.1182/blood-2018-01-769018
  44. Nguyen TS, Lapidot T, Ruf W. Extravascular coagulation in hematopoietic stem and progenitor cell regulation. Blood 2018;132:123-31. https://doi.org/10.1182/blood-2017-12-768986
  45. Randi AM, Laffan MA. Von Willebrand factor and angiogenesis: basic and applied issues. J Thromb Haemost 2017;15:13-20. https://doi.org/10.1111/jth.13551
  46. Daly C, Eichten A, Castanaro C, Pasnikowski E, Adler A, Lalani AS, Papadopoulos N, Kyle AH, Minchinton AI, Yancopoulos GD, Thurston G. Angiopoietin-2 functions as a Tie2 agonist in tumor models, where it limits the effects of VEGF inhibition. Cancer Res 2013;73:108-18. https://doi.org/10.1158/0008-5472.CAN-12-2064
  47. Funasaka T, Raz A, Nangia-Makker P. Galectin-3 in angiogenesis and metastasis. Glycobiology 2014;24:886-91. https://doi.org/10.1093/glycob/cwu086
  48. Kim SJ, Chun KH. Non-classical role of Galectin-3 in cancer progression: translocation to nucleus by carbohydrate-recognition independent manner. BMB Rep 2020;53:173-80. https://doi.org/10.5483/BMBRep.2020.53.4.020
  49. Groeneveld DJ, Sanders YV, Adelmeijer J, Mauser-Bunschoten EP, van der Bom JG, Cnossen MH, Fijnvandraat K, Larosvan Gorkom BAP, Meijer K, Lisman T, Eikenboom J, Leebeek FWG. Circulating angiogenic mediators in patients with moderate and severe von Willebrand disease: a multicentre crosssectional study. Thromb Haemost 2018;118:152-60. https://doi.org/10.1160/TH17-06-0397
  50. Hepner M, Karlaftis V. Protein C. Methods Mol Biol 2013;992:365-72. https://doi.org/10.1007/978-1-62703-339-8_29
  51. Giri H, Cai X, Panicker SR, Biswas I, Rezaie AR. Thrombomodulin regulation of mitogen-activated protein kinases. Int J Mol Sci 2019;20:1851.
  52. Hepner M, Karlaftis V. Protein S. Methods Mol Biol 2013;992:373-81. https://doi.org/10.1007/978-1-62703-339-8_30
  53. Griffin JH, Zlokovic BV, Mosnier LO. Activated protein C, protease activated receptor 1, and neuroprotection. Blood 2018;132:159-69. https://doi.org/10.1182/blood-2018-02-769026
  54. Julovi SM, Shen K, Mckelvey K, Minhas N, March L, Jackson CJ. Activated protein C inhibits proliferation and tumor necrosis factor α-stimulated activation of p38, c-Jun NH2-terminal kinase (JNK) and Akt in rheumatoid synovial fibroblasts. Mol Med 2013;19:324-31. https://doi.org/10.2119/molmed.2013.00034
  55. Healy LD, Puy C, Fernandez JA, Mitrugno A, Keshari RS, Taku NA, Chu TT, Xu X, Gruber A, Lupu F, Griffin JH, McCarty OJT. Activated protein C inhibits neutrophil extracellular trap formation in vitro and activation in vivo. J Biol Chem 2017;292:8616-29. https://doi.org/10.1074/jbc.M116.768309
  56. Loghmani H, Conway EM. Exploring traditional and nontraditional roles for thrombomodulin. Blood 2018;132:148-58. https://doi.org/10.1182/blood-2017-12-768994
  57. Ito T, Kakihana Y, Maruyama I. Thrombomodulin as an intravascular safeguard against inflammatory and thrombotic diseases. Expert Opin Ther Targets 2016;20:151-8. https://doi.org/10.1517/14728222.2016.1086750
  58. Pan B, Wang X, Nishioka C, Honda G, Yokoyama A, Zeng L, Xu K, Ikezoe T. G-protein coupled receptor 15 mediates angiogenesis and cytoprotective function of thrombomodulin. Sci Rep 2017;7:692.
  59. Son BK, Akishita M, Iijima K, Ogawa S, Arai T, Ishii H, Maemura K, Aburatani H, Eto M, Ouchi Y. Thrombomodulin, a novel molecule regulating inorganic phosphate-induced vascular smooth muscle cell calcification. J Mol Cell Cardiol 2013;56:72-80. https://doi.org/10.1016/j.yjmcc.2012.12.013
  60. Chen J, Chung DW. Inflammation, von Willebrand factor, and ADAMTS13. Blood 2018;132:141-7. https://doi.org/10.1182/blood-2018-02-769000
  61. Marzoog BA, Vlasova TI. Membrane lipids under norm and pathology. Eur J Clin Exp Med 2021;19:59-75. https://doi.org/10.15584/ejcem.2021.1.9
  62. Heldin CH, Moustakas A. Signaling receptors for TGF-β family members. Cold Spring Harb Perspect Biol 2016;8:a022053.
  63. Xie X, Sun W, Wang J, Li X, Liu X, Liu N. Activation of thromboxane A2 receptors mediates endothelial dysfunction in diabetic mice. Clin Exp Hypertens 2017;39:312-8. https://doi.org/10.1080/10641963.2016.1246558
  64. Ellinsworth DC, Shukla N, Fleming I, Jeremy JY. Interactions between thromboxane A2, thromboxane/prostaglandin (TP) receptors, and endothelium-derived hyperpolarization. Cardiovasc Res 2014;102:9-16. https://doi.org/10.1093/cvr/cvu015
  65. Ding J, Yu M, Jiang J, Luo Y, Zhang Q, Wang S, Yang F, Wang A, Wang L, Zhuang M, Wu S, Zhang Q, Xia Y, Lu D. Angiotensin II decreases endothelial nitric oxide synthase phosphorylation via AT1R Nox/ROS/PP2A pathway. Front Physiol 2020;11:566410.
  66. Walker M, Green J, Ferrie R, Cook-Mills J. Serotonin receptor regulation of eosinophil transendothelial migration. FASEB J 2017;31:55.7.
  67. Saternos HC, Almarghalani DA, Gibson HM, Meqdad MA, Antypas RB, Lingireddy A, AbouAlaiwi WA. Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol Genomics 2018;50:1-9. https://doi.org/10.1152/physiolgenomics.00062.2017
  68. Radu BM, Osculati AMM, Suku E, Banciu A, Tsenov G, Merigo F, Di Chio M, Banciu DD, Tognoli C, Kacer P, Giorgetti A, Radu M, Bertini G, Fabene PF. All muscarinic acetylcholine receptors (M1-M5) are expressed in murine brain microvascular endothelium. Sci Rep 2017;7:5083.
  69. Wilson C, Lee MD, McCarron JG. Acetylcholine released by endothelial cells facilitates flow-mediated dilatation. J Physiol 2016;594:7267-307. https://doi.org/10.1113/JP272927
  70. Yu L, Dai Y, Mineo C. Novel functions of endothelial scavenger receptor class B Type I. Curr Atheroscler Rep 2021;23:6.
  71. Kashefiolasl S, Leisegang MS, Helfinger V, Schurmann C, Pfluger-Muller B, Randriamboavonjy V, Vasconez AE, Carmeliet G, Badenhoop K, Hintereder G, Seifert V, Schroder K, Konczalla J, Brandes RP. Vitamin D-A new perspective in treatment of cerebral vasospasm. Neurosurgery 2021;88:674-85. https://doi.org/10.1093/neuros/nyaa484
  72. Chaudhuri P, Rosenbaum MA, Sinharoy P, Damron DS, Birnbaumer L, Graham LM. Membrane translocation of TRPC6 channels and endothelial migration are regulated by calmodulin and PI3 kinase activation. Proc Natl Acad Sci U S A 2016;113:2110-5. https://doi.org/10.1073/pnas.1600371113
  73. Dalal PJ, Sullivan DP, Muller WA. Endothelial calmodulin and CaMKII play a role in leukocyte transmigration. FASEB J 2019;33:375.5.
  74. Shihoya W, Nishizawa T, Okuta A, Tani K, Dohmae N, Fujiyoshi Y, Nureki O, Doi T. Activation mechanism of endothelin ETB receptor by endothelin-1. Nature 2016;537:363-8. https://doi.org/10.1038/nature19319
  75. Xu S, Wen H, Jiang H. Urotensin II promotes the proliferation of endothelial progenitor cells through p38 and p44/42 MAPK activation. Mol Med Rep 2012;6:197-200.
  76. Ashraf MA, Nookala V. Biochemistry of platelet activating factor. StatPearls. Treasure Island: StatPearls Publishing; 2022.
  77. Ralevic V, Dunn WR. Purinergic transmission in blood vessels. Auton Neurosci 2015;191:48-66. https://doi.org/10.1016/j.autneu.2015.04.007
  78. Berendam SJ, Koeppel AF, Godfrey NR, Rouhani SJ, Woods AN, Rodriguez AB, Peske JD, Cummings KL, Turner SD, Engelhard VH. Comparative transcriptomic analysis identifies a range of immunologically related functional elaborations of lymph node associated lymphatic and blood endothelial cells. Front Immunol 2019;10:816.
  79. Carman CV, Martinelli R. Lymphocyte-endothelial interactions. In: Bradshaw RA, Stahl PD, editors. Encyclopedia of Cell Biology. Elsevier; 2016. p.632-49.
  80. Ribatti D. The origins of lymphatic vessels: an historical review. In: Ribatti D, editor. Milestones in Immunology. Elsevier; 2017. p.129-62.
  81. Keuschnigg J, Karinen S, Auvinen K, Irjala H, Mpindi JP, Kallioniemi O, Hautaniemi S, Jalkanen S, Salmi M. Plasticity of blood- and lymphatic endothelial cells and marker identification. PLoS One 2013;8:e74293.
  82. Yang J, Zhang S, Zhang L, Xie X, Wang H, Jie Z, Gu M, Yang JY, Cheng X, Sun SC. Lymphatic endothelial cells regulate B-cell homing to lymph nodes via a NIK-dependent mechanism. Cell Mol Immunol 2019;16:165-77. https://doi.org/10.1038/cmi.2017.167
  83. Russo E, Runge P, Jahromi NH, Naboth H, Landtwing A, Montecchi R, Leicht N, Hunter MC, Takai Y, Halin C. CD112 regulates angiogenesis and T cell entry into the spleen. Cells 2021;10:169.
  84. Claro V, Ferro A. Netrin-1: focus on its role in cardiovascular physiology and atherosclerosis. JRSM Cardiovasc Dis 2020;9:2048004020959574.
  85. Dieterich LC, Tacconi C, Menzi F, Proulx ST, Kapaklikaya K, Hamada M, Takahashi S, Detmar M. Lymphatic MAFB regulates vascular patterning during developmental and pathological lymphangiogenesis. Angiogenesis 2020;23:411-23. https://doi.org/10.1007/s10456-020-09721-1
  86. Jourde-Chiche N, Fakhouri F, Dou L, Bellien J, Burtey S, Frimat M, Jarrot PA, Kaplanski G, Le Quintrec M, Pernin V, Rigothier C, Sallee M, Fremeaux-Bacchi V, Guerrot D, Roumenina LT. Endothelium structure and function in kidney health and disease. Nat Rev Nephrol 2019;15:87-108. https://doi.org/10.1038/s41581-018-0098-z
  87. Becker PW, Sacilotto N, Nornes S, Neal A, Thomas MO, Liu K, Preece C, Ratnayaka I, Davies B, Bou-Gharios G, De Val S. An intronic Flk1 enhancer directs arterial-specific expression via RBPJ-mediated venous repression. Arterioscler Thromb Vasc Biol 2016;36:1209-19. https://doi.org/10.1161/ATVBAHA.116.307517
  88. Marzoog BA. Systemic and local hypothermia in the context of cell regeneration. Cryo Letters 2022;43:66-73. https://doi.org/10.54680/fr22210110112
  89. Marzoog BA, Vlasova TI. Myocardiocyte autophagy in the context of myocardiocytes regeneration: a potential novel therapeutic strategy. Egypt J Med Hum Genet 2022;23:41.
  90. Bubb KJ, Aubdool AA, Moyes AJ, Lewis S, Drayton JP, Tang O, Mehta V, Zachary IC, Abraham DJ, Tsui J, Hobbs AJ. Endothelial C-type natriuretic peptide is a critical regulator of angiogenesis and vascular remodeling. Circulation 2019;139:1612-28.  https://doi.org/10.1161/CIRCULATIONAHA.118.036344