DOI QR코드

DOI QR Code

Revealing Joseon period People's single nucleotide polymorphism associated with lactase gene by ancient DNA analysis of human remains from archaeological sites in Korea

  • Chang Seok Oh (Department of Mortuary Science, College of Bio-Convergence, Eulji University) ;
  • Myeung Ju Kim (Department of Anatomy, Dankook University College of Medicine) ;
  • Yi-Suk Kim (Catholic Institute for Applied Anatomy, Department of Anatomy, Colllege of Medicine, The Catholic University of Korea) ;
  • Sori Min (Nuri Institute of Archaeology) ;
  • Kyong Taek Oh (Sudo Institute of Cultural Heritage) ;
  • Soong Deok Lee (Department of Forensic Medicine, Seoul National University College of Medicine) ;
  • Dong Hoon Shin (Institute of Forensic and Anthropological Science, Seoul National University College of Medicine)
  • Received : 2022.09.11
  • Accepted : 2022.11.10
  • Published : 2023.03.31

Abstract

Lactase non-persistence (LNP), one of the causes of lactose intolerance, is related to lactase gene associated single nucleotide polymorphisms (SNPs). Since the frequency of LNP varies by ethnic group and country, the research to reveal the presence or absence of LNP for specific people has been conducted worldwide. However, in East Asia, the study of lactase gene associated SNPs have not been sufficiently examined so far using ancient human specimens from archaeological sites. In our study of Joseon period human remains (n=14), we successfully revealed genetic information of lactase gene associated SNPs (rs1679771596, rs41525747, rs4988236, rs4988235, rs41380347, rs869051967, rs145946881 and rs182549), further confirming that as for eight SNPs, the pre-modern Korean people had a lactase non-persistent genotype. Our report contributes to the establishment of LNP associated SNP analysis technique that can be useful in forthcoming studies on human bones and mummy samples from East Asian archaeological sites.

Keywords

Acknowledgement

This study was supported by grant number 04-2020-0290 from the SNUH research fund and by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (No. 2022R1C1C1013540).

References

  1. Lomer MC, Parkes GC, Sanderson JD. Review article: lactose intolerance in clinical practice--myths and realities. Aliment Pharmacol Ther 2008;27:93-103.
  2. Levitt M, Wilt T, Shaukat A. Clinical implications of lactose malabsorption versus lactose intolerance. J Clin Gastroenterol 2013;47:471-80.
  3. Jarrett EC, Holman GH. Lactose absorption in the premature infant. Arch Dis Child 1966;41:525-7.
  4. Bayless TM, Rosensweig NS. A racial difference in incidence of lactase deficiency. A survey of milk intolerance and lactase deficiency in healthy adult males. JAMA 1966;197:968-72.
  5. Enattah NS, Sahi T, Savilahti E, Terwilliger JD, Peltonen L, Jarvela I. Identification of a variant associated with adult-type hypolactasia. Nat Genet 2002;30:233-7.
  6. Jarvela IE. Molecular diagnosis of adult-type hypolactasia (lactase non-persistence). Scand J Clin Lab Invest 2005;65:535-9.
  7. Ingram CJ, Mulcare CA, Itan Y, Thomas MG, Swallow DM. Lactose digestion and the evolutionary genetics of lactase persistence. Hum Genet 2009;124:579-91.
  8. Swallow DM. Genetics of lactase persistence and lactose intolerance. Annu Rev Genet 2003;37:197-219.
  9. Raz M, Sharon Y, Yerushalmi B, Birk R. Frequency of LCT13910C/T and LCT-22018G/A single nucleotide polymorphisms associated with adult-type hypolactasia/lactase persistence among Israelis of different ethnic groups. Gene 2013;519:67-70.
  10. Enattah NS, Trudeau A, Pimenoff V, Maiuri L, Auricchio S, Greco L, Rossi M, Lentze M, Seo JK, Rahgozar S, Khalil I, Alifrangis M, Natah S, Groop L, Shaat N, Kozlov A, Verschubskaya G, Comas D, Bulayeva K, Mehdi SQ, Terwilliger JD, Sahi T, Savilahti E, Perola M, Sajantila A, Jarvela I, Peltonen L. Evidence of still-ongoing convergence evolution of the lactase persistence T-13910 alleles in humans. Am J Hum Genet 2007;81:615-25.
  11. Sverrisdottir OO, Timpson A, Toombs J, Lecoeur C, Froguel P, Carretero JM, Arsuaga Ferreras JL, Gotherstrom A, Thomas MG. Direct estimates of natural selection in Iberia indicate calcium absorption was not the only driver of lactase persistence in Europe. Mol Biol Evol 2014;31:975-83.
  12. Allentoft ME, Sikora M, Sjogren KG, Rasmussen S, Rasmussen M, Stenderup J, Damgaard PB, Schroeder H, Ahlstrom T, Vinner L, Malaspinas AS, Margaryan A, Higham T, Chivall D, Lynnerup N, Harvig L, Baron J, Della Casa P, Dabrowski P, Duffy PR, Ebel AV, Epimakhov A, Frei K, Furmanek M, Gralak T, Gromov A, Gronkiewicz S, Grupe G, Hajdu T, Jarysz R, Khartanovich V, Khokhlov A, Kiss V, Kolar J, Kriiska A, Lasak I, Longhi C, McGlynn G, Merkevicius A, Merkyte I, Metspalu M, Mkrtchyan R, Moiseyev V, Paja L, Palfi G, Pokutta D, Pospieszny L, Price TD, Saag L, Sablin M, Shishlina N, Smrcka V, Soenov VI, Szeverenyi V, Toth G, Trifanova SV, Varul L, Vicze M, Yepiskoposyan L, Zhitenev V, Orlando L, Sicheritz-Ponten T, Brunak S, Nielsen R, Kristiansen K, Willerslev E. Population genomics of Bronze Age Eurasia. Nature 2015;522:167-72.
  13. Jeong C, Wilkin S, Amgalantugs T, Bouwman AS, Taylor WTT, Hagan RW, Bromage S, Tsolmon S, Trachsel C, Grossmann J, Littleton J, Makarewicz CA, Krigbaum J, Burri M, Scott A, Davaasambuu G, Wright J, Irmer F, Myagmar E, Boivin N, Robbeets M, Ruhli FJ, Krause J, Frohlich B, Hendy J, Warinner C. Bronze Age population dynamics and the rise of dairy pastoralism on the eastern Eurasian steppe. Proc Natl Acad Sci U S A 2018;115:E11248-55.
  14. Saag L, Laneman M, Varul L, Malve M, Valk H, Razzak MA, Shirobokov IG, Khartanovich VI, Mikhaylova ER, Kushniarevich A, Scheib CL, Solnik A, Reisberg T, Parik J, Saag L, Metspalu E, Rootsi S, Montinaro F, Remm M, Magi R, D'Atanasio E, Crema ER, Diez-Del-Molino D, Thomas MG, Kriiska A, Kivisild T, Villems R, Lang V, Metspalu M, Tambets K. The arrival of Siberian ancestry connecting the eastern Baltic to Uralic speakers further east. Curr Biol 2019;29:1701-11.e16.
  15. Hofreiter M, Serre D, Poinar HN, Kuch M, Paabo S. Ancient DNA. Nat Rev Genet 2001;2:353-9.
  16. Willerslev E, Cooper A. Ancient DNA. Proc Biol Sci 2005;272:3-16.
  17. Kim YS, Oh CS, Lee SJ, Park JB, Kim MJ, Shin DH. Sex determination of Joseon people skeletons based on anatomical, cultural and molecular biological clues. Ann Anat 2011;193:539-43.
  18. Oh CS, Hong JH, Shin DH. Mitochondrial DNA analysis of the human skeletons from Goryeo dynasty graves discovered at Youngwol, Gangwon-do. Anat Biol Anthropol 2019;32:61-7.
  19. Kato K, Ishida S, Tanaka M, Mitsuyama E, Xiao JZ, Odamaki T. Association between functional lactase variants and a high abundance of Bifidobacterium in the gut of healthy Japanese people. PLoS One 2018;13:e0206189.
  20. Peng MS, He JD, Zhu CL, Wu SF, Jin JQ, Zhang YP. Lactase persistence may have an independent origin in Tibetan populations from Tibet, China. J Hum Genet 2012;57:394-7.
  21. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 2018;35:1547-9.
  22. Burger J, Kirchner M, Bramanti B, Haak W, Thomas MG. Absence of the lactase-persistence-associated allele in early Neolithic Europeans. Proc Natl Acad Sci U S A 2007;104:3736-41.
  23. Nagy D, Tomory G, Csanyi B, Bogacsi-Szabo E, Czibula A, Priskin K, Bede O, Bartosiewicz L, Downes CS, Rasko I. Comparison of lactase persistence polymorphism in ancient and present-day Hungarian populations. Am J Phys Anthropol 2011;145:262-9.
  24. Plantinga TS, Alonso S, Izagirre N, Hervella M, Fregel R, van der Meer JW, Netea MG, de la Rua C. Low prevalence of lactase persistence in Neolithic South-West Europe. Eur J Hum Genet 2012;20:778-82. Erratum in: Eur J Hum Genet 2012;20:810.
  25. Kruttli A, Bouwman A, Akgul G, Della Casa P, Ruhli F, Warinner C. Ancient DNA analysis reveals high frequency of European lactase persistence allele (T-13910) in medieval central europe. PLoS One 2014;9:e86251.
  26. Ploszaj T, Jedrychowska-Danska K, Zamerska A, DrozdLipinska A, Polinski D, Janowski A, Witas H. Ancient DNA analysis might suggest external origin of individuals from chamber graves placed in medieval cemetery in Pien, Central Poland. Anthropol Anz 2017;74:319-37.
  27. Mnich B, Spinek AE, Chylenski M, Sommerfeld A, Dabert M, Juras A, Szostek K. Analysis of LCT-13910 genotypes and bone mineral density in ancient skeletal materials. PLoS One 2018;13:e0194966. Erratum in: PLoS One 2020;15:e0236908.
  28. Keller A, Graefen A, Ball M, Matzas M, Boisguerin V, Maixner F, Leidinger P, Backes C, Khairat R, Forster M, Stade B, Franke A, Mayer J, Spangler J, McLaughlin S, Shah M, Lee C, Harkins TT, Sartori A, Moreno-Estrada A, Henn B, Sikora M, Semino O, Chiaroni J, Rootsi S, Myres NM, Cabrera VM, Underhill PA, Bustamante CD, Vigl EE, Samadelli M, Cipollini G, Haas J, Katus H, O'Connor BD, Carlson MR, Meder B, Blin N, Meese E, Pusch CM, Zink A. New insights into the Tyrolean Iceman's origin and phenotype as inferred by whole-genome sequencing. Nat Commun 2012;3:698.
  29. Jeong C, Wang K, Wilkin S, Taylor WTT, Miller BK, Bemmann JH, Stahl R, Chiovelli C, Knolle F, Ulziibayar S, Khatanbaatar D, Erdenebaatar D, Erdenebat U, Ochir A, Ankhsanaa G, Vanchigdash C, Ochir B, Munkhbayar C, Tumen D, Kovalev A, Kradin N, Bazarov BA, Miyagashev DA, Konovalov PB, Zhambaltarova E, Miller AV, Haak W, Schiffels S, Krause J, Boivin N, Erdene M, Hendy J, Warinner C. A dynamic 6,000-year genetic history of Eurasia's Eastern Steppe. Cell 2020;183:890-904.e29.
  30. Ning C, Li T, Wang K, Zhang F, Li T, Wu X, Gao S, Zhang Q, Zhang H, Hudson MJ, Dong G, Wu S, Fang Y, Liu C, Feng C, Li W, Han T, Li R, Wei J, Zhu Y, Zhou Y, Wang CC, Fan S, Xiong Z, Sun Z, Ye M, Sun L, Wu X, Liang F, Cao Y, Wei X, Zhu H, Zhou H, Krause J, Robbeets M, Jeong C, Cui Y. Ancient genomes from northern China suggest links between subsistence changes and human migration. Nat Commun 2020;11:2700.
  31. Holland MM, Huffine EF. Molecular analysis of the human mitochondrial DNA control region for forensic identity testing. Curr Protoc Hum Genet 2001;Chapter 14:Unit 14.7.