DOI QR코드

DOI QR Code

Analyzing the Changes in O3 Concentration due to Reduction in Emissions in a Metropolitan Area : A Case Study of Busan during the Summer of 2019

대도시 지역의 배출량 저감에 따른 O3 농도 변화 분석: 부산광역시 2019년 여름 사례

  • Hyeonsik Choe (Division of Earth and Atmospheric Sciences, Pusan National University) ;
  • Wonbae Jeon (Department of Atmospheric Sciences, Pusan National University) ;
  • Dongjin Kim (Division of Earth and Atmospheric Sciences, Pusan National University) ;
  • Chae-Yeong Yang (Department of Atmospheric Sciences, Pusan National University) ;
  • Jeonghyeok Mun (Division of Earth and Atmospheric Sciences, Pusan National University) ;
  • Jaehyeong Park (Division of Earth and Atmospheric Sciences, Pusan National University)
  • 최현식 (부산대학교 지구환경시스템학부) ;
  • 전원배 (부산대학교 대기환경과학과) ;
  • 김동진 (부산대학교 지구환경시스템학부) ;
  • 양채영 (부산대학교 대기환경과학과) ;
  • 문정혁 (부산대학교 지구환경시스템학부) ;
  • 박재형 (부산대학교 지구환경시스템학부)
  • Received : 2023.06.13
  • Accepted : 2023.07.03
  • Published : 2023.07.31

Abstract

In this study, numerical simulations using community multiscale air quality (CMAQ) were conducted to analyze the change in ozone (O3) concentration due to the reduction in nitrogen oxides (NOx)andvolatile organic compounds (VOCs) emissions in Busan. When the NOx and, VOCs emissions were reduced by 40% and, 31%, respectively, the average O3 concentration increased by 4.24 ppb, with the highest O3 change observed in the central region (4.59 ppb). This was attributed to the decrease in O3 titration by nitric oxide (NO) due to the reduction of NOx emissions in Busan, which is classified as a VOCs-limited area. The distribution of O3 concentration changes was closely related to NOx emissions per area, and inland emissions were highly correlated with daily maximum concentrations and 8-h average O3 concentrations. Contrastingly, the effect of emission reduction depended on the wind direction. This suggests that the emission reduction effects may vary depending on the environmental conditions. Further research is needed to comprehensively analyze the emission reduction effects in Busan.

Keywords

Acknowledgement

이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2020R1A6A1A03044834)

References

  1. Appel, K. W., Bash, J. O., Fahey, K. M., Foley, K. M., Gilliam, R. C., Hogrefe, C., Hutzell, W. T., Kang, D., Mathur, R., Murphy, B. N, 2021, The community multiscale air quality (CMAQ) model versions 5.3 and 5.3. 1: system updates and evaluation, Geosci. Model Dev., 14, 2867-2897. https://doi.org/10.5194/gmd-14-2867-2021
  2. Barna, M., Lamb, B., 2000, Improving ozone modeling in regions of complex terrain using observational nudging in a prognostic meteorological model, Atmos. Environ., 34, 4889-4906. https://doi.org/10.1016/S1352-2310(00)00231-4
  3. Bowden, J. H., Otte, T. L., Nolte, C. G., Otte, M. J., 2012, Examining interior grid nudging techniques using two-way nesting in the WRF model for regional climate modeling, J. Clim., 25, 2805-2823. https://doi.org/10.1175/JCLI-D-11-00167.1
  4. Busan Metropolitan City, 2019, Guidelines for Reducing particle matter, https://www.busan.go.kr/depart/cleanair02.
  5. Busan Metropolitan City, 2023, 2040 Busan City Basic Plan, https://book.busan.go.kr/Viewer/8TM2BNFK821V.
  6. Busan Metropolitan City Institute of Health and Environment, 2022, The Annual Report of Busan Metropolitan City 2021, https://book.busan.go.kr/Viewer/L4KZJRQNC2YF.
  7. Busan Metropolitan City Institute of Health and Environment, 2023, The Annual Report of Busan Metropolitan City 2022, https://book.busan.go.kr/Viewer/F52FLJ7LE9F8.
  8. Byun, D., Schere, K. L., 2006, Review of the governing equations, computational algorithms, and other components of the models-3 community multiscale air quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51-77. https://doi.org/10.1115/1.2128636
  9. Chlebowska-Stys, A., Kobus, D., Zathey, M., Sowka, I., 2019, The impact of road transport on air quality in selected Polish cities, Ecol. Chem. Eng. A, 26, 19-36.
  10. Choi, H. J., Lee, H. W., Jeon, W. B., Lee, S. H., 2012, The numerical modeling the sensitivity of coastal wind and ozone concentration to different SST forcing, Atmos. Environ., 46, 554-567. https://doi.org/10.1016/j.atmosenv.2011.06.068
  11. Cox, W. M., Chu, S. H., 1996, Assessment of interannual ozone variation in urban areas from a climatological perspective, Atmos. Environ., 30, 2615-2625. https://doi.org/10.1016/1352-2310(95)00346-0
  12. Crippa, M., Guizzardi, D., Muntean, M., Schaaf, E., Monforti-Ferrario, F., Banja, M., Pagani, F., Solazzo, E., 2022, EDGAR v6.1 global air pollutant emissions.
  13. Do, W. G., Jung, W. S., 2015, A Study on the characteristics of antecedent meteorologic conditions on high ozone days in Busan, J. Environ. Sci. Int., 24, 993-1001. https://doi.org/10.5322/JESI.2015.24.8.993
  14. Do, W. G., Lee, H. W., Jung, W. S., 2007, A Numerical simulation of high ozone episode using OZIPR in Busan, J. Environ. Sci. Int., 16, 985-994. https://doi.org/10.5322/JES.2007.16.8.985
  15. Duncan, B. N., Yoshida, Y., Olson, J. R., Sillman, S., Martin, R. V., Lamsal, L., Hu, Y., Pickering, K. E., Retscher, C., Allen, D. J, 2010, Application of OMI observations to a space-based indicator of NOx and VOC controls on surface ozone formation, Atmos. Environ., 44, 2213-2223. https://doi.org/10.1016/j.atmosenv.2010.03.010
  16. Geng, F., Tie, X., Xu, J., Zhou, G., Peng, L., Gao, W., Tang, X., Zhao, C., 2008, Characterizations of ozone, NOx, and VOCs measured in Shanghai, China., Atmos. Environ., 42, 6873-6883. https://doi.org/10.1016/j.atmosenv.2008.05.045
  17. Guenther, A., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L., Wang, X., 2012, The model of emissions of gases and aerosols from nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geosci. Model Dev., 5, 1471-1492. https://doi.org/10.5194/gmd-5-1471-2012
  18. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horanyi, A., Munoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., 2020, The ERA5 global reanalysis, Q. J. R. Meteorol. Soc., 146, 1999-2049. https://doi.org/10.1002/qj.3803
  19. Jacob, D. J., Winner, D. A., 2009, Effect of climate change on air quality, Atmos. Environ., 43, 51-63. https://doi.org/10.1016/j.atmosenv.2008.09.051
  20. Jeon, B. I., 2014, Characteristics of ozone concentration weekend effect in Busan area, J. Environ. Sci. Int., 23, 861-871. https://doi.org/10.5322/JESI.2014.5.861
  21. Jeon, W., Choi, Y., Lee, H. W., Lee, S. H., Yoo, J. W., Park, J., Lee, H. J., 2015, A Quantitative analysis of grid nudging effect on each process of PM2.5 production in the Korean Peninsula, Atmos. Environ., 122, 763-774. https://doi.org/10.1016/j.atmosenv.2015.10.050
  22. Jeon, W., Choi, Y., Souri, A. H., Roy, A., Diao, L., Pan, S., Lee, H. W., Lee, S. H., 2018, Identification of chemical fingerprints in long-range transport of burning induced upper tropospheric ozone from Colorado to the North Atlantic Ocean, Sci. Total Environ., 613, 820-828. https://doi.org/10.1016/j.scitotenv.2017.09.177
  23. Jeon, W. B., Lee, H. W., Lee, S. H., Choi, H. J., Kim, D. H., Park, S. Y., 2011, Numerical study on the impact of meteorological input data on air quality modeling on high ozone episode at coastal region, J. Korean Soc. Atmos., 27, 30-40. https://doi.org/10.5572/KOSAE.2011.27.1.030
  24. Jeon, W. B., Lee, S. H., Lee, H., Park, C., Kim, D. H., Park, S. Y., 2014, A Study on high ozone formation mechanism associated with change of NOx/VOCs ratio at a rural area in the Korean Peninsula, Atmos. Environ., 89, 10-21. https://doi.org/10.1016/j.atmosenv.2014.02.005
  25. Jeong, J. P., Yi, S. M., Jung, S. H, Kim, M. J., Heo, J. B., 2015, Reduction plan by source of particle matters in Busan Metropolitan City.
  26. Jeong, Y. M., Lee, H. W., Lee, S. H., Choi, H. J., Jeon, W. B., 2010, Numerical study on the impact of regional warming on the meterological field and ozone concentration over the South-Eastern part of the Korean peninsula, J. Environ. Sci. Int., 19, 1431- 1445. https://doi.org/10.5322/JES.2010.19.12.1431
  27. Jeong, Y. M., Lee, S. H., Lee, H. W., Jeon, W. B., 2012, Numerical study on the process analysis of ozone production due to emissions reduction over the Seoul metropolitan area, J. Environ. Sci. Int., 21, 339-349. https://doi.org/10.5322/JES.2012.21.3.339
  28. Jung, W. S., Lee, H. W., Park, J. K., 2007, Analysis of local wind in Busan metropolitan area according to wind sector division-part III: Division of local wind sector over Busan, J. Environ. Sci. Int., 16, 311-321. https://doi.org/10.5322/JES.2007.16.3.311
  29. Kang, Y. H., Kim, Y. K., Hwang, M. K., Jeong, J. H., Kim, H., Kang, M. S., 2019, Spatial-temporal variations in surface ozone concentrations in Busan metropolitan area, J. Environ. Sci. Int., 28, 169-182. https://doi.org/10.5322/JESI.2019.28.2.169
  30. Kim, C. H., Lee, S. H., Jang, M., Chun, S., Kang, S., Ko, K. K., Lee, J. J., Lee, H. J., 2020, A Study on statistical parameters for the evaluation of regional air quality modeling results-Focused on fine dust modeling, J. Environ. Impact Assess., 29, 272-285.
  31. Kim, T., Jeong, J. H., Kim, Y. K., 2016, Sensitivity analysis of the WRF model according to the impact of nudging for improvement of ozone prediction, J. Environ. Sci. Int., 25, 683-694. https://doi.org/10.5322/JESI.2016.25.5.683
  32. Kleczek, M. A., Steeneveld, G. J., Holtslag, A. A., 2014, Evaluation of the weather research and forecasting mesoscale model for GABLS3: impact of boundary-layer schemes, boundary conditions and spin-up, Bound.-Layer Meteor., 152, 213-243. https://doi.org/10.1007/s10546-014-9925-3
  33. Korean Statistical Information Servicd (KOSIS), Busan Metropolitan City e-Local Index, https://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1YL0000&vw_cd=MT_GTITLE02&list_id=21&obj_var_id=A&itm_id=21&seqNo=&conn_path=MT_GTITLE02&path=%252FstatisticsList%252FstatisticsListIndex.do.
  34. Mehdipour, V., Memarianfard, M., 2017, Application of support vector machine and gene expression programming on tropospheric ozone prognosticating for Tehran metropolitan, Civ. Eng, J., 3, 557-567. https://doi.org/10.28991/cej-030984
  35. Munoz-Esparza, D., Kosovic, B., 2018, Generation of inflow turbulence in large-eddy simulations of nonneutral atmospheric boundary layers with the cell perturbation method, Mon. Weather Rev., 146, 1889-1909. https://doi.org/10.1175/MWR-D-18-0077.1
  36. National Institute of Environmental Research (NIER), 2022, 2021 NIER Annual Report, https://eng.nier.go.kr/NIER/cop/bbs/selectNoLoginBoardArticle.do.
  37. National Air Emission Inventroy and Research Center (NAIR), 2022, 2019 National Air Pollutant Emissions Inventory, https://www.air.go.kr/eng/capss/emission/year.do?menuId=190.
  38. Pinto, J. O., Jensen, A. A., Jimenez, P. A., Hertneky, T., Munoz-Esparza, D., Dumont, A., Steiner, M, 2021, Real-time WRF large-eddy simulations to support uncrewed aircraft system (UAS) flight planning and operations during 2018 LAPSE-RATE, Earth Syst. Sci. Data, 13, 697-711. https://doi.org/10.5194/essd-13-697-2021
  39. Seinfeld, J. H., 1989, Urban air pollution: state of the science. Science, 243, 745-752. https://doi.org/10.1126/science.243.4892.745
  40. Seinfeld, J. H., Pandis, S. N., 2016, Atmospheric chemistry and physics: from air pollution to climate change, John Wiley & Sons, Inc., 1326.
  41. Sillman, S., 1995, The use of NOy, H2O2, and HNO3 as indicators for ozone-NOx-hydrocarbon sensitivity in urban locations, J. Geophys. Res.-Atmos., 100, 14175-14188. https://doi.org/10.1029/94JD02953
  42. Sillman, S., He, D., 2002, Some theoretical results concerning O3-NOx-VOC chemistry and NOx-VOC indicators, J. Geophys. Res.-Atmos., 107, ACH 26-21-ACH 26-15.
  43. Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., Wang, W., Powers, J. G., Duda, M. G., Barker, D. M., 2019, A Description of the advanced research WRF model version 4, National Center for Atmospheric Research: Boulder, CO, USA.
  44. Tiwari, S., Dahiya, A., Kumar, N., 2015, Investigation into relationships among NO, NO2, NOx, O3, and CO at an urban background site in Delhi, India, Atmos. Res., 157, 119-126. https://doi.org/10.1016/j.atmosres.2015.01.008
  45. U.S. Environmental Protection Agency, 2006, Air quality criteria for ozone and related photochemical oxidants, Office, NC f. EA-R., Ed. US EPA: Research Triangle Park, 2, https://www3.epa.gov/ttn/naaqs/aqmguide/collection/cp2/20060228_ord_epa-600_r-05-004bf_ozone_criteria_document_vol-2.pdf.
  46. Vivanco, M. G., de Fatima Andrade, M., 2006, Validation of the emission inventory in the Sao Paulo Metropolitan Area of Brazil, based on ambient concentrations ratios of CO, NMOG and NOx and on a photochemical model, Atmos. Environ., 40, 1189-1198. https://doi.org/10.1016/j.atmosenv.2005.10.041
  47. Yang, Y., Liu, X., Zheng, J., Tan, Q., Feng, M., Qu, Y., An, J., Cheng, N., 2019, Characteristics of one-year observation of VOCs, NOx, and O3 at an urban site in Wuhan, China., J. Environ. Sci., 79, 297-310. https://doi.org/10.1016/j.jes.2018.12.002
  48. Yin, H., Liu, C., Hu, Q., Liu, T., Wang, S., Gao, M., Xu, S., Zhang, C., Su, W., 2021, Opposite impact of emission reduction during the COVID-19 lockdown period on the surface concentrations of PM2.5 and O3 in Wuhan, China., Environ. Pollut., 289, 117899.
  49. Zoran, M. A., Savastru, R. S., Savastru, D. M., Tautan, M. N., 2020, Assessing the relationship between ground levels of ozone (O3) and nitrogen dioxide (NO2) with coronavirus (COVID-19) in Milan, Italy, Sci. Total Environ., 740, 140005.