DOI QR코드

DOI QR Code

Anti-influenza Compounds Isolated from Descurainia sophia Seeds

  • Woo Seung Yang (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University) ;
  • Choong Je Ma (Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University)
  • Received : 2023.03.02
  • Accepted : 2023.06.16
  • Published : 2023.06.30

Abstract

Descurainia sophia seeds methanol extract showed significant anti-influenza activity and we tried to isolate anti-influenza compounds from the D. sophia extract. D. sophia seeds were extracted with 80% methanol and fractionated with n-hexane, ethyl acetate, CHCl3 and n-butanol. The anti-influenza activity of each fraction was assessed using sulforhodamine B (SRB) method in A549 cells, human-derived lung cancer cells. The ethyl acetate and CHCl3 fractions showed the most potent anti-influenza activity. Seven compounds were isolated from CHCl3 fraction and identified 1-decanol (1), 2-(3,4-dihydroxy-2-methylenebutoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol (2), daucosterol (3), isorhamnetin (4), quercetin (5), sinapic acid (6), and helveticoside (7) by spectroscopic data such as UV, IR, 1H-NMR, 13C-NMR and mass spectroscopy. Anti-influenza activities of isolated compounds were evaluated using SRB method in A549 cells. Compounds 3, 4 and 7 had significant anti-influenza activity in a dose-dependent manner.

Keywords

References

  1. Slemons, R. D.; Johnson, D. C.; Osborn, J. S.; Hayes, F. Avian Dis. 1974, 18, 119-124. https://doi.org/10.2307/1589250
  2. Zheng, W.; Tao, Y. J. FEBS Lett. 2013, 587, 1206-1214. https://doi.org/10.1016/j.febslet.2013.02.048
  3. Hong, E. H.; Song, J. H.; Kang, K. B.; Sung, S. H.; Ko, H. J.; Yang, H. J. Biomol. Ther (Seoul). 2015, 23, 345-349. https://doi.org/10.4062/biomolther.2015.019
  4. Jiang, W. Y. Trends Pharmacol. Sci. 2005, 26, 558-563.
  5. Bent, S. J. Gen. Intern. Med. 2008, 23, 854-859.
  6. Firenzuoli, F.; Gori, L. Evid. Based Complement. Alternat. Med. 2007, 4, 37-40. https://doi.org/10.1093/ecam/nem096
  7. Sun, K.; Li, X.; Li, W.; Wang, J.; Liu, J.; Sha, Y. Chem. Pharm. Bull (Tokyo). 2004, 52, 1483-1486. https://doi.org/10.1248/cpb.52.1483
  8. Askari, H.; Enayati, N.; Ahmadian-Attari, M. M.; Bakhtiyari, M.; Alireazei, A. Iran. J. Pharm. Res. 2021, 20, 40-52.
  9. Xu, W.; Chu, K.; Li, H.; Chen, L.; Zhang, Y.; Tang, X. Molecules 2011, 16, 10029-10045. https://doi.org/10.3390/molecules161210029
  10. Choi, H.; Ahn, S.; Lee, B. G.; Chang, I.; Hwang, J. S. Pigment Cell Res. 2005, 18, 439-446. https://doi.org/10.1111/j.1600-0749.2005.00266.x
  11. Khodarahmi, E.; Asghari G. H.; Hassanzadeh, F.; Mirian, M.; Khodarahmi, G. A. Res. Pharm. Sci. 2015, 10, 169-176.
  12. Nimrouzi, M.; Sadeghpour, O.; Imanieh, M. H.; Shams Ardekani, M.; Salehi, A.; Minaei, M. B.; Zarshenas, M. M. Iran. J. Pediatr. 2015, 25, e425.
  13. Lee, Y. J.; Kim, N. S.; Kim, H.; Yi, J. M.; Oh, S. M.; Bang, O. S.; Lee, J. Arch. Pharm. Res. 2013, 36, 536-541. https://doi.org/10.1007/s12272-013-0066-x
  14. Sun, K.; Li, X.; Li, W.; Liu, J. M.; Wang, J. H.; Sha, Y. Nat. Prod. Res. 2006, 20, 519-522.
  15. Sun, K.; Li, X.; Liu, J. M.; Wang, J. H.; Li, W.; Sha, Y. J. Asian Nat. Prod. Res. 2005, 7, 853-856.
  16. Mohamed, N. H.; Mahrous, A. E. Rec. Nat. Prod. 2009, 3, 58-67.
  17. Kim, B. Y.; Lee, J.; Kim, N. S. BMC Genomics 2015, 16, 713.
  18. Vichai, V.; Kirtikara, K. Nat. Protoc. 2006, 1, 1112-1116. https://doi.org/10.1038/nprot.2006.179
  19. Song, J.; Yeo, S. G.; Hong, E. H.; Lee, B. R.; Kim, J. W.; Kim, J.; Jeong, H.; Kwon, Y.; Kim, H.; Lee, S.; Park, J. H.; Ko, H. J. Biomol. Ther (Seoul). 2014, 22, 41-46.
  20. Cano, R.; Yus, M.; Ramon, D. J. Tetrahedron 2011, 67, 8079-8085. https://doi.org/10.1016/j.tet.2011.08.063
  21. Zaman, M. K.; Ali, M.; Siddiqui, A. W.; Rafiullah, M. R. M. J. Saudi Chem. Soc. 2005, 9, 161-170.
  22. Faizi, S.; Ali, M.; Saleem, R.; Irfanullah.; Bibi, S. Magn. Reson. Chem. 2001, 39, 399-405. https://doi.org/10.1002/mrc.855
  23. Webster, R. G.; Bean, W. J.; Gorman, O. T.; Chambers, T. M.; Kawaoka, Y. Microbiol. Rev. 1992, 56, 152-179. https://doi.org/10.1128/mr.56.1.152-179.1992
  24. Bloom, D. E.; Black, S.; Rappuoil, R. Proc. Natl. Acad. Sci. USA. 2017, 114, 4055-4059. https://doi.org/10.1073/pnas.1701410114
  25. Salimi, M.; Ardestaniyan, M. H.; Mostafapour Kandelous, H.; Saeidnia, S.; Gohari, A. R.; Amanzadeh, A.; Sanati, H.; Sepahdar, Z.; Ghorbani, S.; Salimi, M. Cell Prolif. 2014, 47, 172-179.
  26. Rajavel, T.; Mohankumar, R.; Archunan, G.; Ruckmani, K.; Devi, K. P. Sci. Rep. 2017, 7, 3418.
  27. Thanh, T. B.; Duc, L. V.; Thanh, H. N.; Tien, V. N. J. Basic Clin. Physiol. Pharmacol. 2017, 28, 79-84.
  28. Choi, J. N.; Choi, Y. H.; Lee, J. M.; Noh, I. C.; Park, J. W.; Choi, W. S.; Choi, J. H. Nat. Prod. Res. 2012, 26, 2340-2343.
  29. Lee, J. H.; Lee, J. Y.; Park, J. H.; Jung, H. S.; Kim, J. S.; Kang, S. S.; Kim, Y. S.; Han, Y. Vaccine 2007, 25, 3834-3840. https://doi.org/10.1016/j.vaccine.2007.01.108
  30. Gong, G.; Guan Y. Y.; Zhang Z. L.; Rahman, K.; Wang, S. J.; Zhou, S.; Luan, X.; Zhang, H. Biomed. Pharmacother. 2020, 128, 110301.
  31. An, N.; Sun, Y.; Ma, L.; Shi, S.; Zheng, X.; Feng, W.; Shan, Z.; Han, Y.; Zhao, L.; Wu, H. Arch. Med. Res. 2020, 51, 224-232. https://doi.org/10.1016/j.arcmed.2020.02.007