DOI QR코드

DOI QR Code

Assessment of In vitro Antioxidant, Antidiabetic and Cytotoxic Activities of Sphaeranthus africanus Extracts

  • Tran Thi Huyen (Research Center for Genetics and Reproductive Health – CGRH, School of Medicine, Vietnam National University HCM City) ;
  • Julien Dujardin (Research Center of Ginseng and Medicinal Materials Ho Chi Minh City 2) ;
  • Nguyen Thi Thu Huong (Research Center of Ginseng and Medicinal Materials Ho Chi Minh City 2) ;
  • Chung Thi My Duyen (Research Center of Ginseng and Medicinal Materials Ho Chi Minh City 2) ;
  • Nguyen Hoang Minh (Research Center of Ginseng and Medicinal Materials Ho Chi Minh City 2) ;
  • Ha Quang Thanh (Research Center of Ginseng and Medicinal Materials Ho Chi Minh City 2) ;
  • Dao Tran Mong (Research Center of Ginseng and Medicinal Materials Ho Chi Minh City 2) ;
  • Ly Hai Trieu (Research Center of Ginseng and Medicinal Materials Ho Chi Minh City 2) ;
  • Nguyen Mai Truc Tien (Research Center of Ginseng and Medicinal Materials Ho Chi Minh City 2) ;
  • Mai Thanh Chung (Research Center of Ginseng and Medicinal Materials Ho Chi Minh City 2) ;
  • Nguyen Nhat Minh (Research Center of Ginseng and Medicinal Materials Ho Chi Minh City 2) ;
  • Nguyen Thi Ngoc Dan (Research Center of Ginseng and Medicinal Materials Ho Chi Minh City 2) ;
  • Huynh Loi (Faculty of Pharmacy, Binh Duong University)
  • 투고 : 2023.03.02
  • 심사 : 2023.06.02
  • 발행 : 2023.06.30

초록

Sphaeranthus africanus is commonly used as a traditional remedy for sore throats and pain treatment in Vietnam. The aerial parts have been studied for its anti-inflammatory and anti-proliferative properties. However, the antioxidant and antidiabetic potential of the plant has not been explored. In this work, hydrophilic extracts of the plant's aerial parts were prepared in order to investigate its antioxidant and anti-diabetic properties. Also, the cytotoxicity of the root was evaluated and compared to that of the aerial parts. All of the extracts inhibited lipid peroxidation with IC50 values ranging from 2.05 to 3.56 ㎍/mL, indicating substantial antioxidant activity. At an IC50 value of 4.80 ㎍/mL, the 50% ethanol extract exhibited the most potent inhibition of α-glucosidase. The cytotoxic activity of root extracts is 2 to 5-fold less than that of the aerial parts. Nevertheless, dichloromethane and ethyl acetate extracts of the root demonstrated a selective effect on leukemia cells, with no harm towards the normal HEK-293 cell line. This work provides a scientific support for the antioxidant and antidiabetic activity of the plant. Hence, it may find a promising material for the development of novel antioxidant and antidiabetic agents. More research can be conducted on the phytochemistry and anticancer activities of the plant's root.

키워드

과제정보

This research was funded by the Vietnam National University Hochiminh city (Project No. C2022-44-01). The authors wish to thank the Department of Pharmacognosy, University of Graz, for assistance with cytotoxic protocol.

참고문헌

  1. Lin, X.; Xu, Y.; Pan, X.; Xu, J.; Ding, Y.; Sun, X.; Song, X.; Ren, Y.; Shan, P. F. Sci. Rep. 2020, 10, 14790. 
  2. Pramesh, C. S.; Badwe, R. A.; Bhoo-Pathy, N.; Booth, C. M.; Chinnaswamy, G.; Dare, A. J.; de Andrade, V. P.; Hunter, D. J.; Gopal, S.; Gospodarowicz, M.; Gunasekera, S.; Ilbawi, A.; Kapambwe, S.; Kingham, P.; Kutluk, T.; Lamichhane, N.; Mutebi, M.; Orem, J.; Parham, G.; Ranganathan, P.; Sengar, M.; Sullivan, R.; Swaminathan, S.; Tannock, I. F.; Tomar, V.; Vanderpuye, V.; Varghese, C.; Weiderpass, E. Nat. Med. 2022, 28, 649-657.  https://doi.org/10.1038/s41591-022-01738-x
  3. Wright Jr, E.; Scism -Bacon, J. L.; Glass, L. C. Int. J. Clin. Pract. 2006, 60, 308-314.  https://doi.org/10.1111/j.1368-5031.2006.00825.x
  4. Hayes, J. D.; Dinkova-Kostova, A. T.; Tew, K. D. Cancer Cell 2020, 38, 167-197.  https://doi.org/10.1016/j.ccell.2020.06.001
  5. Hussain, T.; Tan, B.; Yin, Y.; Blachier, F.; Tossou, M. C. B.; Rahu, N. Oxid. Med. Cell. Longev. 2016, 2016, 7432797. 
  6. Saha, S. K.; Lee, S. B.; Won, J.; Choi, H. Y.; Kim, K.; Yang, G. M.; Dayem, A. A.; Cho, S. G. Int. J. Mol. Sci. 2017, 18, 1544. 
  7. Woerdenbag, H. J.; Nguyen, T. M.; Vu, D. V.; Tran, H.; Nguyen, D. T.; Tran, T. V.; De Smet, P. A.; Brouwers, J. R. Expert Rev. Clin. Pharmacol. 2012, 5, 459-477.  https://doi.org/10.1586/ecp.12.34
  8. Pham, H. H. Vietnamese medicinal herbs; Medical Publishing House; Vietnamese, 2010, p 7. 
  9. Robyns, W. New Phytologist 1925, 24, 124-128.  https://doi.org/10.1111/j.1469-8137.1925.tb06655.x
  10. Chi, V. V. Dictionary of medicinal plants in Vietnam; Medical Publishing House; Vietnam, 2014, pp 662-663. 
  11. Tran, H. T.; Pferschy-Wenzig, E. M.; Kretschmer, N.; Kunert, O.; Huynh, L.; Bauer, R. J. Nat. Prod. 2018, 81, 1829-1834.  https://doi.org/10.1021/acs.jnatprod.8b00309
  12. Tran, H. T.; Gao, X.; Kretschmer, N.; Pferschy-Wenzig, E. M.; Raab, P.; Pirker, T.; Temml, V.; Schuster, D.; Kunert, O.; Huynh, L.; Bauer, R. Phytomedicine 2019, 62, 152951. 
  13. Tran, H. T.; Solnier, J.; Pferschy-Wenzig, E. M.; Kunert, O.; Martin, L.; Bhakta, S.; Huynh, L.; Le, T. M.; Bauer, R.; Bucar, F. Antibiotics 2020, 9, 390.  https://doi.org/10.3390/antibiotics9070390
  14. Wettasinghe, M.; Shahidi, F. Food Chem. 2000, 70, 17-26.  https://doi.org/10.1016/S0308-8146(99)00269-1
  15. Nenadis, N.; Tsimidou, M. J. Am. Oil Chem. Soc. 2002, 79, 1191-1195.  https://doi.org/10.1007/s11746-002-0626-z
  16. Kedare, S. B.; Singh, R. P. J. Food Sci. Technol. 2011, 48, 412-422.  https://doi.org/10.1007/s13197-011-0251-1
  17. Amarowicz, R.; Pegg, R. B.; Rahimi-Moghaddam, P.; Barl, B.; Weil, J. A. Food Chem. 2004, 84, 551-562.  https://doi.org/10.1016/S0308-8146(03)00278-4
  18. Krishna-Kumar, H. N.; Navyashree, S. N.; Rakshitha, H. R.; Chauhan, J. B. Int. J. Pharm. Biomed. Res 2012, 3, 81-84. 
  19. Chang, S. T.; Wu, J. H.; Wang, S. Y.; Kang, P. L.; Yang, N. S.; Shyur, L. F. J. Agric. Food Chem. 2001, 49, 3420-3424.  https://doi.org/10.1021/jf0100907
  20. Wickramaratne, M. N.; Punchihewa, J. C.; Wickramaratne, D. B. M. BMC Complement Altern. Med. 2016, 16, 466. 
  21. Dong, H. Q.; Li, M.; Zhu, F.; Liu, F. L.; Huang, J. B. Food Chem. 2012, 130, 261-266.  https://doi.org/10.1016/j.foodchem.2011.07.030
  22. Scudiero, D. A.; Shoemaker, R. H.; Paull, K. D.; Monks, A.; Tierney, S.; Nofziger, T. H.; Currens, M. J.; Seniff, D.; Boyd, M. R. Cancer Res. 1988, 48, 4827-4833. 
  23. Ratner, R. E. Am. J. Cardiol. 2001, 88, 26-31.  https://doi.org/10.1016/S0002-9149(01)01834-3
  24. de Melo, E. B.; da Silveira Gomes, A.; Carvalho, I. Tetrahedron 2006, 62, 10277-10302.  https://doi.org/10.1016/j.tet.2006.08.055
  25. Bhandari, M. R.; Jong-Anurakkun, N.; Hong, G.; Kawabata, J. Food Chem. 2008, 106, 247-252.  https://doi.org/10.1016/j.foodchem.2007.05.077
  26. Shobana, S.; Sreerama, Y. N.; Malleshi, N. Food Chem. 2009, 115, 1268-1273.  https://doi.org/10.1016/j.foodchem.2009.01.042
  27. Song, Y.; Manson, J. E.; Buring, J. E.; Sesso, H. D.; Liu, S. J. Am. Coll. Nutr. 2005, 24, 376-384.  https://doi.org/10.1080/07315724.2005.10719488
  28. Kwon, Y. I.; Apostolidis, E.; Shetty, K. Bioresour. Technol. 2008, 99, 2981-2988.  https://doi.org/10.1016/j.biortech.2007.06.035
  29. Machu, L.; Misurcova, L.; Vavra Ambrozova, J.; Orsavova, J.; Mlcek, J.; Sochor, J.; Jurikova, T. Molecules 2015, 20, 1118-1133.  https://doi.org/10.3390/molecules20011118
  30. Ozsoy, N.; Can, A.; Yanardag, R.; Akev, N. Food Chem. 2008, 110, 571-583.  https://doi.org/10.1016/j.foodchem.2008.02.037
  31. Canga, I.; Vita, P.; Oliveira, A. I.; Castro, M. A.; Pinho, C. Molecules 2022, 27, 4989. 
  32. Tran, H. T.; Kretschmer, N.; Huynh, L.; Bauer, R. Planta Med. 2023, 89, 624-636. https://doi.org/10.1055/a-1988-2207