DOI QR코드

DOI QR Code

Draft Genome Sequence of Meropenem-Resistant Pseudomonas peli CJ30, Isolated from the Han River, South Korea

대한민국 한강에서 분리된 메로페넴 내성 Pseudomonas peli CJ30의 유전체 서열 초안

  • Yong-Seok Kim (Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University) ;
  • Chang-Jun Cha (Department of Systems Biotechnology and Center for Antibiotic Resistome, Chung-Ang University)
  • 김용석 (중앙대학교 시스템생명공학과 및 항생제 내성체 연구센터) ;
  • 차창준 (중앙대학교 시스템생명공학과 및 항생제 내성체 연구센터)
  • Received : 2023.03.24
  • Accepted : 2023.04.21
  • Published : 2023.06.28

Abstract

Meropenem-resistant Pseudomonas peli CJ30 was isolated from the Han River, South Korea. The genome of strain CJ30 comprising 4,919,106 bp with a G + C content of 60.0% was assembled to nine contigs. The draft genome sequence contained 5,411 protein-coding genes, 18 rRNA genes, and 70 tRNA genes. Strain CJ30 contained blaSFC-3 and ampC β-lactamase gene.

메로페넴에 내성을 갖는 Pseudomonas peli CJ30 균주가 대한민국의 한강에서 분리되었다. CJ30 균주의 유전체는 크기가 4,919,106 bp이고 G + C 함량이 60.0%인 아홉 개의 contig로 조립되었다. CJ30 균주의 유전체 서열은 5,411개의 단백질 코딩 유전자, 18개의 rRNA 유전자 및 70개의 tRNA 유전자를 포함하였다. 균주 CJ30에는 blaSFC-3 및 ampC β-락타마아제 유전자가 포함되어 있습니다.

Keywords

Acknowledgement

This work was supported by the Korea Ministry of Environment (MOE) as 'the Environmental Health Action Program (2016001350004)' and the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (NRF-2023R1A2C1003654).

References

  1. Hesse C, Schulz F, Bull CT, Shaffer BT, Yan Q, Shapiro N, et al. 2018. Genome-based evolutionary history of Pseudomonas spp. Environ. Microbiol. 20: 2142-2159. https://doi.org/10.1111/1462-2920.14130
  2. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. 2011. Carbapenems: past, present, and future. Antimicrob. Agents Chemother. 55: 4943-4960. https://doi.org/10.1128/AAC.00296-11
  3. Bush K. 2018. Past and present perspectives on beta-Lactamases. Antimicrob. Agents Chemother. 62.
  4. Wick RR, Judd LM, Gorrie CL, Holt KE. 2017. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13: e1005595.
  5. Manni M, Berkeley MR, Seppey M, Simao FA, Zdobnov EM. 2021. BUSCO Update: novel and streamlined workflows along with broader and deeper phylogenetic coverage for scoring of eukaryotic, prokaryotic, and viral genomes. Mol. Biol. Evol. 38: 4647-4654. https://doi.org/10.1093/molbev/msab199
  6. Chklovski A, Parks DH, Woodcroft BJ, Tyson GW. 2022. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. bioRxiv. 2022.2007.2011.499243. 2022.2007.2011.499243
  7. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 110: 1281-1286. https://doi.org/10.1007/s10482-017-0844-4
  8. Hyatt D, Chen GL, Locascio PF, Land ML, Larimer FW, Hauser LJ. 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11: 119.
  9. Kalvari I, Nawrocki EP, Ontiveros-Palacios N, Argasinska J, Lamkiewicz K, Marz M, et al. 2021. Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 49: D192-D200. https://doi.org/10.1093/nar/gkaa1047
  10. Chan PP, Lowe TM. 2019. tRNAscan-SE: Searching for tRNA genes in genomic sequences. Methods Mol. Biol. 1962: 1-14. https://doi.org/10.1007/978-1-4939-9173-0_1
  11. Schwengers O, Jelonek L, Dieckmann MA, Beyvers S, Blom J, Goesmann A. 2021. Bakta: rapid and standardized annotation of bacterial genomes via alignment-free sequence identification. Microb. Genom. 7: 000685.
  12. Feldgarden M, Brover V, Gonzalez-Escalona N, Frye JG, Haendiges J, Haft DH, et al. 2021. AMR finder plus and the reference gene catalog facilitate examination of the genomic links among antimicrobial resistance, stress response, and virulence. Sci. Rep. 11: 12728.
  13. Henriques I, Moura A, Alves A, Saavedra MJ, Correia A. 2004. Molecular characterization of a carbapenem-hydrolyzing class A beta-lactamase, SFC-1, from Serratia fonticola UTAD54. Antimicrob. Agents Chemother. 48: 2321-2324. https://doi.org/10.1128/AAC.48.6.2321-2324.2004
  14. Jacoby GA. 2009. AmpC β-Lactamases. Clin. Microbiol. Rev. 22: 161-182. https://doi.org/10.1128/CMR.00036-08