DOI QR코드

DOI QR Code

Isolation and Characterization of a N2O-Reducing Rhizobacterium, Pseudomonas sp. M23 from Maize Rhizosphere Soil

옥수수 근권토양으로부터 N2O 환원 근권세균 Pseudomonas sp. M23의 분리 및 특성

  • Ji-Yoon Kim (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Soo Yeon Lee (Department of Environmental Science and Engineering, Ewha Womans University) ;
  • Kyung-Suk Cho (Department of Environmental Science and Engineering, Ewha Womans University)
  • 김지윤 (이화여자대학교 환경공학과) ;
  • 이수연 (이화여자대학교 환경공학과) ;
  • 조경숙 (이화여자대학교 환경공학과)
  • Received : 2023.03.24
  • Accepted : 2023.05.19
  • Published : 2023.06.28

Abstract

The N2O-reducing rhizobacterium, Pseudomonas sp. M23, was isolated from maize rhizosphere soil. The maximum N2O reduction rate of the strain M23 was 15.6 mmol·g-dry cell weight-1·h-1. Its N2O reduction activity was not inhibited by diesel contaminant, and it was enhanced by the addition of the root exudates of maize and tall fescue. The remediation efficiency of diesel-contaminated soil planted with maize or tall fescue was not inhibited by inoculating with the strain M23. Root weights in the soil inoculated with the strain M23 were greater than those in the non-inoculated soil. These results suggest that Pseudomonas sp. M23 is a promising bacterium to mitigate N2O emissions during the remediation of diesel-contaminated soil.

옥수수 근권 토양으로부터의 N2O 환원 근권세균인 Pseudomonas sp. M23을 분리하였다. M23 균주의 최대 N2O 환원속도는 15.6 mmol·g-dry cell-1·h-1이었다. M23 균주의 N2O 환원 활성은 디젤 오염물에 의해 저해받지 않았고, 옥수수와 톨페스큐 뿌리삼출물 첨가에 의해 향상되었다. M23 균주 접종은 옥수수와 톨페스큐를 이용한 디젤 오염 토양의 정화 효율을 저해하지 않았다. M23 균주를 접종한 토양에서 재배한 식물체의 뿌리무게는 미접종 토양에서의 뿌리무게보다 컸으나, 유의적 차이는 없었다. 이러한 결과는 Pseudomonas sp. M23이 유류 오염 토양의 근권정화 과정에서 N2O 배출을 저감하는데 활용 가능한 유용한 세균임을 시사한다.

Keywords

Acknowledgement

This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government through the Ministry of Science and ICT (MSIT) (2019R1A2C2006701 & 2022R1A2C2006615).

References

  1. Seo Y, Cho KS. 2020. Rhizoremdiation of petroleum hydrocarbon-contaminated soils and greenhouse gas emission characteristics: A review. Microbiol. Biotechnol. Lett. 48: 99-112.  https://doi.org/10.4014/mbl.1911.11014
  2. Hussain I, Puschenreiter M, Gerhard S, Schoftner P, Yousaf S, Wang A, et al. 2018. Rhizoremediation of petroleum hydrocarbon-contaminated soils: Improvement opportunities and field applications. Environ. Exp. Bot. 147: 202-219.  https://doi.org/10.1016/j.envexpbot.2017.12.016
  3. Varjani SJ. 2017. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 223: 277-286.  https://doi.org/10.1016/j.biortech.2016.10.037
  4. Huang H, Tang J, Niu Z, Giesy JP. 2019. Interactions between electrokinetics and rhizoremediation on the remediation of crude oil-contaminated soil. Chemosphere 229: 418-425.  https://doi.org/10.1016/j.chemosphere.2019.04.150
  5. Pant R, Pandey P, Kotoky R. 2016. Rhizosphere mediated biodegradation of 1,4-dichlorobenzene by plant growth promoting rhizobacteria of Jatropha curcas. Ecol. Eng. 94: 50-56.  https://doi.org/10.1016/j.ecoleng.2016.05.079
  6. Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A. 2010. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils.J. Environ. Qual. 39: 1224-1235.  https://doi.org/10.2134/jeq2009.0138
  7. Henault C, Grossel A, Mary B, Roussel M, Leonard J. 2012. Nitrous oxide emission by agricultural soils: a review of spatial and temporal variability for mitigation. Pedosphere 22: 426-433.  https://doi.org/10.1016/S1002-0160(12)60029-0
  8. Park HJ, Kwon JH, Yun J, Cho KS. 2020. Characterization of nitrous oxide reduction by Azospira sp. HJ23 isolated from advanced wastewater treatment sludge. J. Environ. Sci. Health Part A-Toxic/Hazard Subst. Environ. Eng. 55: 1459-1467.  https://doi.org/10.1080/10934529.2020.1812321
  9. Kim JY, Cho KS. 2022. Inoculation effect of Pseudomonas sp. TF716 on N2O emissions during rhizoremediation of diesel-contaminated soil. Sci. Rep. 12: 13018. 
  10. IPCC. Climate change 2013. The physical science basis, Working group 1 contribution to the fifth assessment report of the intergovernmental panel on climate change, Cambridge Univ. Press. 
  11. Johnston H. 1971. Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science 173: 517-522.  https://doi.org/10.1126/science.173.3996.517
  12. Lee S, Kim S, Kim YJ, Lee YY, Cho KS. 2021. Characterization of CH4-oxidizing and N2O-reducing bacterial consortia enriched using rhizosphere of maize and tall fescue. Microbiol. Biotechnol. Lett. 49: 225-238.  https://doi.org/10.48022/mbl.2102.02007
  13. Heuer H, Krsek M, Baker P, Smalla K, Wellington EM. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241.  https://doi.org/10.1128/aem.63.8.3233-3241.1997
  14. Dalsing BL, Truchon AN, Gonzalez-Orta ET, Milling AS, Allen C. 2015. Ralstonia solanacearum uses inorganic nitrogen metabolism for virulence, ATP production, and detoxification in the oxygen-limited host xylem environment. mBio 6: e02471. 
  15. Ramasamy D, Kokcha S, Lagier JC, Nguyen TT, Raoult D, Fournier PE. 2012. Genome sequence and description of Aeromicrobium massiliense sp. nov. Stand. Genomic Sci. 7: 246-257.  https://doi.org/10.4056/sigs.3306717
  16. Read-Daily BL, Sabba F, Pavissich JP, Nerenberg R. 2016. Kinetics of nitrous oxide (N2O) formation and reduction by Paracoccus pantotrophus. AMB Express 6: 85. 
  17. Suenaga T, Riya S, Hosomi M., Terada A. 2018. Biokinetic characterization and activities of N2O-reducing bacteria in response to various oxygen levels. Front. Microbiol. 9: 697. 
  18. Wu S, Zhuang G, Bai Z, Cen Y, Xu S, Sun H, et al. 2018. Mitigation of nitrous oxide emissions from acidic soils by Bacillus amyloliquefaciens, a plant growth-promoting bacterium. Glob. Change Biol. 24: 2352-2365.  https://doi.org/10.1111/gcb.14025
  19. Zhou Y, Zhao S, Suenaga T, Kuroiwa M, Riya S, Terada A. 2022. Nitrous oxide-sink capability of denitrifying bacteria impacted by nitrite and pH. Chem. Eng. J. 428: 132402. 
  20. Miyahara M, Kim SW, Fushinobu S, Takaki K, Yamada T, Watanabe A, et al. 2010. Potential of aerobic denitrification by Pseudomonas stutzeri TR2 to reduce nitrous oxide emissions from wastewater treatment plants. Appl. Environ. Microbiol. 76: 4619-4625.  https://doi.org/10.1128/AEM.01983-09
  21. Yokoyama K, Yumura M, Honda T, Ajitomi E. 2016. Characterization of denitrification and net N2O-reduction properties of novel aerobically N2O-reducing bacteria. Soil Sci. Plant Nutr. 62: 230-239.  https://doi.org/10.1080/00380768.2016.1178076
  22. Zheng M, He D, Ma T, Chen Q, Liu S, Ahmad M, et al. 2014. Reducing NO and N2O emission during aerobic denitrification by newly isolated Pseudomonas stutzeri PCN-1. Bioresour. Technol. 162: 80-88.  https://doi.org/10.1016/j.biortech.2014.03.125
  23. Usyskin-Tonne A, Hadar Y, Minz D. 2019. Altering N2O emissions by manipulating wheat root bacterial community. Sci. Rep. 9: 7613. 
  24. Naveed M, Brown LK, Raffan AC, George TS, Bengough AG, Roose T, et al. 2017. Plant exudates may stabilize or weaken soil depending on species, origin and time. Eur. J. Soil Sci. 68: 806-816.  https://doi.org/10.1111/ejss.12487
  25. Liu W, Hou J, Wang Q, Yang H, Luo Y, Christie P. 2015. Collection and analysis of root exudates of Festuca arundinacea L. and their role in facilitating the phytoremediation of petroleum contaminated soil. Plant Soil 389: 109-119.  https://doi.org/10.1007/s11104-014-2345-9
  26. Henry S, Texier S, Hallet S, Bru D, Dambreville C, Cheneby D, et al. 2008. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. Environ. Microbiol. 10: 3082-3092.  https://doi.org/10.1111/j.1462-2920.2008.01599.x
  27. Hong SH, Ryu HW, Cho KS. 2011. Rhizoremediation of dieselcontaminated soil using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation 22: 593-601.  https://doi.org/10.1007/s10532-010-9432-2
  28. Afzal M, Khan S, Iqbal S, Mirza MS, Khan QM. 2013. Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of diesel-contaminated soil. Int. Biodeterior. Biodegrad. 85: 331-336.  https://doi.org/10.1016/j.ibiod.2013.08.022
  29. Khan AL, Numan M, Bilal S, Asaf S, Crafword K, Imran M, et al. 2022. Mangrove's rhizospheric engineering with bacterial inoculation improve degradation of diesel contamination. J. Hazard. Mater. 423: 127046.