Acknowledgement
This study was supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government through the Ministry of Science and ICT (MSIT) (2019R1A2C2006701 & 2022R1A2C2006615).
References
- Seo Y, Cho KS. 2020. Rhizoremdiation of petroleum hydrocarbon-contaminated soils and greenhouse gas emission characteristics: A review. Microbiol. Biotechnol. Lett. 48: 99-112. https://doi.org/10.4014/mbl.1911.11014
- Hussain I, Puschenreiter M, Gerhard S, Schoftner P, Yousaf S, Wang A, et al. 2018. Rhizoremediation of petroleum hydrocarbon-contaminated soils: Improvement opportunities and field applications. Environ. Exp. Bot. 147: 202-219. https://doi.org/10.1016/j.envexpbot.2017.12.016
- Varjani SJ. 2017. Microbial degradation of petroleum hydrocarbons. Bioresour. Technol. 223: 277-286. https://doi.org/10.1016/j.biortech.2016.10.037
- Huang H, Tang J, Niu Z, Giesy JP. 2019. Interactions between electrokinetics and rhizoremediation on the remediation of crude oil-contaminated soil. Chemosphere 229: 418-425. https://doi.org/10.1016/j.chemosphere.2019.04.150
- Pant R, Pandey P, Kotoky R. 2016. Rhizosphere mediated biodegradation of 1,4-dichlorobenzene by plant growth promoting rhizobacteria of Jatropha curcas. Ecol. Eng. 94: 50-56. https://doi.org/10.1016/j.ecoleng.2016.05.079
- Singh BP, Hatton BJ, Singh B, Cowie AL, Kathuria A. 2010. Influence of biochars on nitrous oxide emission and nitrogen leaching from two contrasting soils.J. Environ. Qual. 39: 1224-1235. https://doi.org/10.2134/jeq2009.0138
- Henault C, Grossel A, Mary B, Roussel M, Leonard J. 2012. Nitrous oxide emission by agricultural soils: a review of spatial and temporal variability for mitigation. Pedosphere 22: 426-433. https://doi.org/10.1016/S1002-0160(12)60029-0
- Park HJ, Kwon JH, Yun J, Cho KS. 2020. Characterization of nitrous oxide reduction by Azospira sp. HJ23 isolated from advanced wastewater treatment sludge. J. Environ. Sci. Health Part A-Toxic/Hazard Subst. Environ. Eng. 55: 1459-1467. https://doi.org/10.1080/10934529.2020.1812321
- Kim JY, Cho KS. 2022. Inoculation effect of Pseudomonas sp. TF716 on N2O emissions during rhizoremediation of diesel-contaminated soil. Sci. Rep. 12: 13018.
- IPCC. Climate change 2013. The physical science basis, Working group 1 contribution to the fifth assessment report of the intergovernmental panel on climate change, Cambridge Univ. Press.
- Johnston H. 1971. Reduction of stratospheric ozone by nitrogen oxide catalysts from supersonic transport exhaust. Science 173: 517-522. https://doi.org/10.1126/science.173.3996.517
- Lee S, Kim S, Kim YJ, Lee YY, Cho KS. 2021. Characterization of CH4-oxidizing and N2O-reducing bacterial consortia enriched using rhizosphere of maize and tall fescue. Microbiol. Biotechnol. Lett. 49: 225-238. https://doi.org/10.48022/mbl.2102.02007
- Heuer H, Krsek M, Baker P, Smalla K, Wellington EM. 1997. Analysis of actinomycete communities by specific amplification of genes encoding 16S rRNA and gel-electrophoretic separation in denaturing gradients. Appl. Environ. Microbiol. 63: 3233-3241. https://doi.org/10.1128/aem.63.8.3233-3241.1997
- Dalsing BL, Truchon AN, Gonzalez-Orta ET, Milling AS, Allen C. 2015. Ralstonia solanacearum uses inorganic nitrogen metabolism for virulence, ATP production, and detoxification in the oxygen-limited host xylem environment. mBio 6: e02471.
- Ramasamy D, Kokcha S, Lagier JC, Nguyen TT, Raoult D, Fournier PE. 2012. Genome sequence and description of Aeromicrobium massiliense sp. nov. Stand. Genomic Sci. 7: 246-257. https://doi.org/10.4056/sigs.3306717
- Read-Daily BL, Sabba F, Pavissich JP, Nerenberg R. 2016. Kinetics of nitrous oxide (N2O) formation and reduction by Paracoccus pantotrophus. AMB Express 6: 85.
- Suenaga T, Riya S, Hosomi M., Terada A. 2018. Biokinetic characterization and activities of N2O-reducing bacteria in response to various oxygen levels. Front. Microbiol. 9: 697.
- Wu S, Zhuang G, Bai Z, Cen Y, Xu S, Sun H, et al. 2018. Mitigation of nitrous oxide emissions from acidic soils by Bacillus amyloliquefaciens, a plant growth-promoting bacterium. Glob. Change Biol. 24: 2352-2365. https://doi.org/10.1111/gcb.14025
- Zhou Y, Zhao S, Suenaga T, Kuroiwa M, Riya S, Terada A. 2022. Nitrous oxide-sink capability of denitrifying bacteria impacted by nitrite and pH. Chem. Eng. J. 428: 132402.
- Miyahara M, Kim SW, Fushinobu S, Takaki K, Yamada T, Watanabe A, et al. 2010. Potential of aerobic denitrification by Pseudomonas stutzeri TR2 to reduce nitrous oxide emissions from wastewater treatment plants. Appl. Environ. Microbiol. 76: 4619-4625. https://doi.org/10.1128/AEM.01983-09
- Yokoyama K, Yumura M, Honda T, Ajitomi E. 2016. Characterization of denitrification and net N2O-reduction properties of novel aerobically N2O-reducing bacteria. Soil Sci. Plant Nutr. 62: 230-239. https://doi.org/10.1080/00380768.2016.1178076
- Zheng M, He D, Ma T, Chen Q, Liu S, Ahmad M, et al. 2014. Reducing NO and N2O emission during aerobic denitrification by newly isolated Pseudomonas stutzeri PCN-1. Bioresour. Technol. 162: 80-88. https://doi.org/10.1016/j.biortech.2014.03.125
- Usyskin-Tonne A, Hadar Y, Minz D. 2019. Altering N2O emissions by manipulating wheat root bacterial community. Sci. Rep. 9: 7613.
- Naveed M, Brown LK, Raffan AC, George TS, Bengough AG, Roose T, et al. 2017. Plant exudates may stabilize or weaken soil depending on species, origin and time. Eur. J. Soil Sci. 68: 806-816. https://doi.org/10.1111/ejss.12487
- Liu W, Hou J, Wang Q, Yang H, Luo Y, Christie P. 2015. Collection and analysis of root exudates of Festuca arundinacea L. and their role in facilitating the phytoremediation of petroleum contaminated soil. Plant Soil 389: 109-119. https://doi.org/10.1007/s11104-014-2345-9
- Henry S, Texier S, Hallet S, Bru D, Dambreville C, Cheneby D, et al. 2008. Disentangling the rhizosphere effect on nitrate reducers and denitrifiers: insight into the role of root exudates. Environ. Microbiol. 10: 3082-3092. https://doi.org/10.1111/j.1462-2920.2008.01599.x
- Hong SH, Ryu HW, Cho KS. 2011. Rhizoremediation of dieselcontaminated soil using the plant growth-promoting rhizobacterium Gordonia sp. S2RP-17. Biodegradation 22: 593-601. https://doi.org/10.1007/s10532-010-9432-2
- Afzal M, Khan S, Iqbal S, Mirza MS, Khan QM. 2013. Inoculation method affects colonization and activity of Burkholderia phytofirmans PsJN during phytoremediation of diesel-contaminated soil. Int. Biodeterior. Biodegrad. 85: 331-336. https://doi.org/10.1016/j.ibiod.2013.08.022
- Khan AL, Numan M, Bilal S, Asaf S, Crafword K, Imran M, et al. 2022. Mangrove's rhizospheric engineering with bacterial inoculation improve degradation of diesel contamination. J. Hazard. Mater. 423: 127046.