DOI QR코드

DOI QR Code

Bioethanol Production from Sugarcane Molasses by Fed-Batch Fermentation Systems Using Instant Dry Yeast

  • Agustin Krisna Wardani (Department of Food Science and Biotechnology, Faculty of Agricultural Technology, Universitas Brawijaya) ;
  • Cinthya Putri Utami (Department of Food Science and Biotechnology, Faculty of Agricultural Technology, Universitas Brawijaya) ;
  • Mochamad Bagus Hermanto (Department of Bioprocess Engineering, Faculty of Agricultural Technology, Universitas Brawijaya) ;
  • Aji Sutrisno (Department of Food Science and Biotechnology, Faculty of Agricultural Technology, Universitas Brawijaya) ;
  • Fenty Nurtyastuti (Department of Food Science and Biotechnology, Faculty of Agricultural Technology, Universitas Brawijaya)
  • Received : 2023.01.28
  • Accepted : 2023.04.19
  • Published : 2023.06.28

Abstract

Bioethanol has recently attracted much attention as a sustainable and environmentally friendly alternative energy source. This study aimed to develop a potential process for bioethanol production by fed-batch fermentation using instant dry yeast. To obtain the highest cell growth, we studied the influence of the initial sugar concentrations and pH of sugarcane molasses in batch fermentation. The batch system employed three levels of sugar concentrations, viz. 10%, 15%, 20% (w/v), and two levels of pH, 5.0 and 5.5. The highest cell growth was achieved at 20% (w/v) and pH 5.5 of molasses. The fed-batch system was then performed using the best batch fermentation conditions, with a molasses concentration of 13% (w/v) which resulted in high ethanol concentration and fermentation efficiency of 15.96% and 89%, respectively.

Keywords

Acknowledgement

This research was financially supported by the Faculty of Agricultural Technology, Universitas Brawijaya, Indonesia.

References

  1. Bharathiraja B, Chakravarthy M, Ranjith KR, Yogendran D, Yuvaraj D, Jayamuthunagai J, et al. 2015. Aquatic biomass (algae) as a future feed stock for bio-refineries: A review on cultivation, processing and products. Renew. Sust. Energ. Rev. 47: 634-653. https://doi.org/10.1016/j.rser.2015.03.047
  2. Muruaga ML, Carvalho KG, Dominguez JM, de Souza Oliveira RP, Perotti N. 2016. Isolation and characterization of Saccharomyces species for bioethanol production from sugarcane molasses: Studies of scale up in bioreactor. Renew. Energ. 85: 649-656. https://doi.org/10.1016/j.renene.2015.07.008
  3. Rathnayake M, Chaireongsirikul T, Svangariyaskul A, Lawtrakul L, Toochinda P. 2018. Process simulation based life cycle assessment for bioethanol production from cassava, cane molasses, and rice straw. J. Clean. Prod. 190: 24-35. https://doi.org/10.1016/j.jclepro.2018.04.152
  4. Asif HK, Ehsan A, Kashaf Z, Abeera AA, Azra N, Muneeb Q. 2015. Comparative study of bioethanol production from sugarcane molasses by using Zymomonas mobilis and Saccharomyces cerevisiae. Afr. J. Biotechnol. 14: 2455-2462. https://doi.org/10.5897/AJB2015.14569
  5. Jayanti AN, Sutrisno A, Wardani AK, Murdiyatmo U, Raharja R, Murdiyatmo U. 2019. Bioethanol production from sugarcane molasses by instant dry yeast. IOP Conference Series: Earth and Environmental Science 1: 230.
  6. Dubois M, Gilles KA, Hamilton JK, Rebers PT, Smith F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350-356. https://doi.org/10.1021/ac60111a017
  7. Rose AH, Harrison JS. 2012. The yeasts: yeast technology. Elsevier.
  8. Alfenore S, Cameleyre X, Benbadis L, Bideaux C, Uribelarrea JL, Goma G, et al. 2004. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process. Appl. Microbiol. Biotechnol. 63: 537-42. https://doi.org/10.1007/s00253-003-1393-5
  9. Mukhtar K, Asgher M, Afghan S, Hussain K, Zia-ul-Hussnain S. 2010. Comparative study on two commercial strains of Saccharomyces cerevisiae for optimum ethanol production on industrial scale. J. Biomed. Biotechnol. 2010: 419586.
  10. Darvishi F, Moghaddami NA. 2019. Optimization of an industrial medium from molasses for bioethanol production using the Taguchi statistical experimental-design method. Fermentation. 5: https://doi.org/10.3390/fermentation5010014 .
  11. Chotineeranat S, Wansuksri R, Piyachomkwan K, Chatakanonda P, Weerathaworn P, Sriroth, K. 2010. Effect of calcium ions on ethanol production from molasses by Saccharomyces cerevisiae. Sugar Tech. 12: 120-124. https://doi.org/10.1007/s12355-010-0024-6
  12. Rowe CJ. 1973. Food analysis by atomic absorption spectroscopy. Varian Techtron.
  13. Pradeep P, Reddy OVS. 2010. High gravity fermentation of sugarcane molasses to produce ethanol: Effect of nutrients. Indian J. Microbiol. 50: 82-87. https://doi.org/10.1007/s12088-010-0006-0
  14. Kawahigashi H, Kasuga S, Okuizumi H, Hiradate S, Yonemaru JI. 2013. Evaluation of Brix and sugar content in stem juice from sorghum varieties. Grassl. Sci. 59: 11-19. https://doi.org/10.1111/grs.12006
  15. Mears L, Stocks SM, Sin G, Gernaey KV. 2017. A review of control strategies for manipulating the feed rate in fed-batch fermentation processes. J. Biotechnol. 245: 34-46. https://doi.org/10.1016/j.jbiotec.2017.01.008
  16. Okoye COB, Alum OL, Akpomie KG, Alumona TN. 2017. Optimization of the fermentation conditions for the production of bioethanol from cane sugar molasses using Saccharomyces cerevisae. Sci. Technol. 18: 48-56.
  17. Sankh SN, Deshpande PS, Arvindekar AU. 2011. Improvement of ethanol production using Saccharomyces cerevisiae by enhancement of biomass and nutrient supplementation. Appl. Biochem. Biotechnol. 164: 1237-1245. https://doi.org/10.1007/s12010-011-9209-z
  18. Mandenius CF. 2016. Challenges for bioreactor design and operation. Bioreactors: Design, operation and novel applications. Ch. 1.
  19. Wu R, Chen D, Cao S, Lu Z, Huang J, Lu, et al. 2020. Enhanced ethanol production from sugarcane molasses by industrially engineered Saccharomyces cerevisiae via replacement of the PHO4 gene. RSC Adv. 10: 2267-2276. https://doi.org/10.1039/C9RA08673K
  20. de Vasconcelos JN. 2015. Ethanol Fermentation. Sugarcane: Agricultural Production, Bioenergy and Ethanol. pp. 311-340.
  21. Ghosh S, Chakraborty R, Raychaudhuri U. 2012. Optimizing process conditions for palm (Borassus flabelliffer) wine fermentation using response surface methodology. Int. Food Res. J. 19: 1633-1639.
  22. Naghshbandi MP, Tabatabaei M, Aghbashlo M, Gupta VK, Sulaiman A, Karimi K, et al. 2019. Progress toward improving ethanol production through decreased glycerol generation in Saccharomyces cerevisiae by metabolic and genetic engineering approaches. Renew. Sust. Energ. Rev. 115: 109353.
  23. Taherzadeh MJ, Karimi K. 2011. Fermentation inhibitors in ethanol processes and different strategies to reduce their effects. In Biofuels (1st ed.). Elsevier Inc.
  24. Clarke KG. 2013. Microbial kinetics during batch, continuous and fed-batch processes. In Bioprocess Eng. pp. 97-146.
  25. Clement K, Iseli A, Karote D, Cremer J, Rajagopalan S. 2012. Nanostructured materials: industrial applications. Handbook of Industrial Chemistry and Biotechnology. pp. 265-306.
  26. Rodrigues B, Peinado JM, Raposo S, Constantino A, Quintas C, Emilia Lima-Costa M. 2015. Kinetic and energetic parameters of carob wastes fermentation by Saccharomyces cerevisiae: crabtree effect, ethanol toxicity, and invertase repression. J. Microbiol. Biotechnol. 25: 837-844. https://doi.org/10.4014/jmb.1408.08015
  27. Kim SK, Nguyen CM, Ko EH, Kim IC, Kim JS, Kim JC. 2017. Bioethanol production from Hydrodictyon reticulatum by fed-batch fermentation using Saccharomyces cerevisiae KCTC7017. J. Microbiol. Biotechnol. 27: 1112-1119. https://doi.org/10.4014/jmb.1607.07066