DOI QR코드

DOI QR Code

The complex role of extracellular vesicles in HIV infection

  • Jung-Hyun Lee (Department of Life Science, University of Seoul)
  • Received : 2023.04.15
  • Accepted : 2023.05.25
  • Published : 2023.06.30

Abstract

During normal physiological and abnormal pathophysiological conditions, all cells release membrane vesicles, termed extracellular vesicles (EVs). Growing evidence has revealed that EVs act as important messengers in intercellular communication. EVs play emerging roles in cellular responses and the modulation of immune responses during virus infection. EVs contribute to triggering antiviral responses to restrict virus infection and replication. Conversely, the role of EVs in the facilitation of virus spread and pathogenesis has been widely documented. Depending on the cell of origin, EVs carry effector functions from one cell to the other by horizontal transfer of their bioactive cargoes, including DNA, RNA, proteins, lipids, and metabolites. The diverse constituents of EVs can reflect the altered states of cells or tissues during virus infection, thereby offering a diagnostic readout. The exchanges of cellular and/or viral components by EVs can inform the therapeutic potential of EVs for infectious diseases. This review discusses recent advances of EVs to explore the complex roles of EVs during virus infection and their therapeutic potential, focusing on HIV-1.

Keywords

Acknowledgement

This work was supported by the 2022 Research Fund of the University of Seoul.

References

  1. van Niel G, D'Angelo G and Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19, 213-228 https://doi.org/10.1038/nrm.2017.125
  2. Johnstone RM, Adam M, Hammond JR, Orr L and Turbide C (1987) Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262, 9412-9420 https://doi.org/10.1016/S0021-9258(18)48095-7
  3. Kalluri R and LeBleu VS (2020) The biology, function, and biomedical applications of exosomes. Science 367, eaau6977
  4. MacKenzie A, Wilson HL, Kiss-Toth E et al (2001) Rapid secretion of interleukin-1beta by microvesicle shedding. Immunity 15, 825-835 https://doi.org/10.1016/S1074-7613(01)00229-1
  5. Lai JJ, Chau ZL, Chen SY et al (2022) Exosome processing and characterization approaches for research and technology development. Adv Sci (Weinh) 9, e2103222
  6. Alenquer M and Amorim MJ (2015) Exosome biogenesis, regulation, and function in viral infection. Viruses 7, 5066-5083 https://doi.org/10.3390/v7092862
  7. Meckes DG and Raab-Traub N (2011) Microvesicles and viral infection. J Virol 85, 12844-12854 https://doi.org/10.1128/JVI.05853-11
  8. Chahar HS, Bao X and Casola A (2015) Exosomes and their role in the life cycle and pathogenesis of RNA viruses. Viruses 7, 3204-3225 https://doi.org/10.3390/v7062770
  9. Ramakrishnaiah V, Thumann C, Fofana I et al (2013) Exosome-mediated transmission of hepatitis C virus between human hepatoma Huh7.5 cells. Proc Natl Acad Sci U S A 110, 13109-13113 https://doi.org/10.1073/pnas.1221899110
  10. Kalamvoki M, Du T and Roizman B (2014) Cells infected with herpes simplex virus 1 export to uninfected cells exosomes containing STING, viral mRNAs, and microRNAs. Proc Natl Acad Sci U S A 111, E4991-E4996 https://doi.org/10.1073/pnas.1419338111
  11. Robbins PD and Morelli AE (2014) Regulation of immune responses by extracellular vesicles. Nat Rev Immunol 14, 195-208 https://doi.org/10.1038/nri3622
  12. Wolf P (1967) The nature and significance of platelet products in human plasma. Br J Haematol 13, 269-288 https://doi.org/10.1111/j.1365-2141.1967.tb08741.x
  13. Sims PJ, Faioni EM, Wiedmer T and Shattil SJ (1988) Complement proteins C5b-9 cause release of membrane vesicles from the platelet surface that are enriched in the membrane receptor for coagulation factor Va and express prothrombinase activity. J Biol Chem 263, 18205-18212 https://doi.org/10.1016/S0021-9258(19)81346-7
  14. Satta N, Toti F, Feugeas O et al (1994) Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J Immunol 153, 3245-3255 https://doi.org/10.4049/jimmunol.153.7.3245
  15. Al-Nedawi K, Meehan B, Micallef J et al (2008) Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat Cell Biol 10, 619-624 https://doi.org/10.1038/ncb1725
  16. Tricarico C, Clancy J and D'Souza-Schorey C (2017) Biology and biogenesis of shed microvesicles. Small GTPases 8, 220-232 https://doi.org/10.1080/21541248.2016.1215283
  17. Mathieu M, Martin-Jaular L, Lavieu G and Thery C (2019) Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication. Nat Cell Biol 21, 9-17 https://doi.org/10.1038/s41556-018-0250-9
  18. Harding C, Heuser J and Stahl P (1984) Endocytosis and intracellular processing of transferrin and colloidal gold-transferrin in rat reticulocytes: demonstration of a pathway for receptor shedding. Eur J Cell Biol 35, 256-263
  19. Pan BT, Teng K, Wu C, Adam M and Johnstone RM (1985) Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol 101, 942-948 https://doi.org/10.1083/jcb.101.3.942
  20. Ostrowski M, Carmo NB, Krumeich S et al (2010) Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat Cell Biol 12, 19-30 https://doi.org/10.1038/ncb2000
  21. Jahn R and Scheller RH (2006) SNAREs--engines for membrane fusion. Nat Rev Mol Cell Biol 7, 631-643 https://doi.org/10.1038/nrm2002
  22. Trajkovic K, Hsu C, Chiantia S et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319, 1244-1247 https://doi.org/10.1126/science.1153124
  23. Deeks SG, Overbaugh J, Phillips A and Buchbinder S (2015) HIV infection. Nat Rev Dis Primers 1, 15035
  24. Chun TW and Fauci AS (2012) HIV reservoirs: pathogenesis and obstacles to viral eradication and cure. AIDS 26, 1261-1268 https://doi.org/10.1097/QAD.0b013e328353f3f1
  25. Davey RT, Bhat N, Yoder C et al (1999) HIV-1 and T cell dynamics after interruption of highly active antiretroviral therapy (HAART) in patients with a history of sustained viral suppression. Proc Natl Acad Sci U S A 96, 15109-15114 https://doi.org/10.1073/pnas.96.26.15109
  26. Khatua AK, Taylor HE, Hildreth JEK and Popik W (2009) Exosomes packaging APOBEC3G confer human immunodeficiency virus resistance to recipient cells. J Virol 83, 512-521 https://doi.org/10.1128/JVI.01658-08
  27. Li YL, Langley CA, Azumaya CM et al (2023) The structural basis for HIV-1 Vif antagonism of human APOBEC3G. Nature 615, 728-733 https://doi.org/10.1038/s41586-023-05779-1
  28. Dias MVS, Costa CS and daSilva LLP (2018) The ambiguous roles of extracellular vesicles in HIV replication and pathogenesis. Front Microbiol 9, 2411
  29. de Carvalho JV, de Castro RO, da Silva EZM et al (2014) Nef neutralizes the ability of exosomes from CD4+ T cells to act as decoys during HIV-1 infection. PLoS ONE 9, e113691
  30. Tumne A, Prasad VS, Chen Y et al (2009) Noncytotoxic suppression of human immunodeficiency virus type 1 transcription by exosomes secreted from CD8 + T cells. J Virol 83, 4354-4364 https://doi.org/10.1128/JVI.02629-08
  31. Sun L, Wang X, Zhou Y et al (2016) Exosomes contribute to the transmission of anti-HIV activity from TLR3-activated brain microvascular endothelial cells to macrophages. Antiviral Res 134, 167-171 https://doi.org/10.1016/j.antiviral.2016.07.013
  32. Guo L, Xu XQ, Zhou L et al (2018) Human intestinal epithelial cells release antiviral factors that inhibit HIV infection of macrophages. Front Immunol 9, 247
  33. Naslund TI, Paquin-Proulx D, Paredes PT et al (2014) Exosomes from breast milk inhibit HIV-1 infection of dendritic cells and subsequent viral transfer to CD4+ T cells. AIDS 28, 171-180 https://doi.org/10.1097/QAD.0000000000000159
  34. Madison MN, Roller RJ and Okeoma CM (2014) Human semen contains exosomes with potent anti-HIV-1 activity. Retrovirology 11, 102
  35. Mack M, Kleinschmidt A, Bruhl H et al (2000) Transfer of the chemokine receptor CCR5 between cells by membrane-derived microparticles: a mechanism for cellular human immunodeficiency virus 1 infection. Nat Med 6, 769-775 https://doi.org/10.1038/77498
  36. Rozmyslowicz T, Majka M, Kijowski J et al (2003) Platelet- and megakaryocyte-derived microparticles transfer CXCR4 receptor to CXCR4-null cells and make them susceptible to infection by X4-HIV. AIDS 17, 33-42 https://doi.org/10.1097/00002030-200301030-00006
  37. Sims B, Farrow A, Williams S et al (2017) Role of TIM-4 in exosome-dependent entry of HIV-1 into human immune cells. Int J Nanomedicine 12, 4823-4833 https://doi.org/10.2147/IJN.S132762
  38. Sampey GC, Saifuddin M, Schwab A et al (2016) Exosomes from HIV-1-infected cells stimulate production of pro-inflammatory cytokines through trans-activating response (TAR) RNA. J Biol Chem 291, 1251-1266 https://doi.org/10.1074/jbc.M115.662171
  39. Arakelyan A, Fitzgerald W, Zicari S, Vanpouille C and Margolis L (2017) Extracellular vesicles carry HIV Env and facilitate HIV infection of human lymphoid tissue. Sci Rep 7, 1695
  40. Muratori C, Cavallin LE, Kratzel K et al (2009) Massive secretion by T cells is caused by HIV Nef in infected cells and by Nef transfer to bystander cells. Cell Host Microbe 6, 218-230 https://doi.org/10.1016/j.chom.2009.06.009
  41. Lee JH, Wittki S, Brau T et al (2013) HIV Nef, paxillin, and Pak1/2 regulate activation and secretion of TACE/ADAM10 proteases. Mol Cell 49, 668-679 https://doi.org/10.1016/j.molcel.2012.12.004
  42. Jacob RA, Johnson AL, Pawlak EN et al (2017) The interaction between HIV-1 Nef and adaptor protein-2 reduces Nef-mediated CD4+ T cell apoptosis. Virology 509, 1-10 https://doi.org/10.1016/j.virol.2017.05.018
  43. James CO, Huang MB, Khan M et al (2004) Extracellular Nef protein targets CD4+ T cells for apoptosis by interacting with CXCR4 surface receptors. J Virol 78, 3099-3109 https://doi.org/10.1128/JVI.78.6.3099-3109.2004
  44. Lee JH, Ostalecki C, Zhao Z et al (2018) HIV activates the tyrosine kinase Hck to secrete ADAM protease-containing extracellular vesicles. EBioMedicine 28, 151-161 https://doi.org/10.1016/j.ebiom.2018.01.004
  45. Lee JH, Schierer S, Blume K et al (2016) HIV-Nef and ADAM17-containing plasma extracellular vesicles induce and correlate with immune pathogenesis in chronic HIV infection. EBioMedicine 6, 103-113 https://doi.org/10.1016/j.ebiom.2016.03.004
  46. Roth W, Huang M, Addae Konadu K, Powell M and Bond V (2015) Micro RNA in exosomes from HIV-infected macrophages. Int J Environ Res Public Health 13, 32
  47. Bernard MA, Zhao H, Yue SC et al (2014) Novel HIV-1 miRNAs stimulate TNFα release in human macrophages via TLR8 signaling pathway. PloS One 9, e106006
  48. Barile L and Vassalli G (2017) Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacol Ther 174, 63-78 https://doi.org/10.1016/j.pharmthera.2017.02.020
  49. Yoshioka Y, Kosaka N, Konishi Y et al (2014) Ultra-sensitive liquid biopsy of circulating extracellular vesicles using ExoScreen. Nat Commun 5, 3591
  50. Fais S, O'Driscoll L, Borras FE et al (2016) Evidence-based clinical use of nanoscale extracellular vesicles in nanomedicine. ACS Nano 10, 3886-3899 https://doi.org/10.1021/acsnano.5b08015
  51. Ferguson SW and Nguyen J (2016) Exosomes as therapeutics: the implications of molecular composition and exosomal heterogeneity. J Control Release 228, 179-190 https://doi.org/10.1016/j.jconrel.2016.02.037
  52. El Andaloussi S, Lakhal S, Mager I and Wood MJA (2013) Exosomes for targeted siRNA delivery across biological barriers. Adv Drug Deliv Rev 65, 391-397 https://doi.org/10.1016/j.addr.2012.08.008
  53. Agrahari V, Agrahari V and Mitra AK (2016) Nanocarrier fabrication and macromolecule drug delivery: challenges and opportunities. Ther Deliv 7, 257-278 https://doi.org/10.4155/tde-2015-0012
  54. Liao W, Du Y, Zhang C et al (2019) Exosomes: the next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater 86, 1-14 https://doi.org/10.1016/j.actbio.2018.12.045
  55. Cheng L, Sharples RA, Scicluna BJ and Hill AF (2014) Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles 3 doi: 10.3402/jev.v3.23743
  56. Perets N, Hertz S, London M and Offen D (2018) Intranasal administration of exosomes derived from mesenchymal stem cells ameliorates autistic-like behaviors of BTBR mice. Mol Autism 9, 57
  57. El-Andaloussi S, Lee Y, Lakhal-Littleton S et al (2012) Exosome-mediated delivery of siRNA in vitro and in vivo. Nat Protoc 7, 2112-2126 https://doi.org/10.1038/nprot.2012.131
  58. Nolte-'t Hoen E, Cremer T, Gallo RC and Margolis LB (2016) Extracellular vesicles and viruses: are they close relatives? Proc Natl Acad Sci U S A 113, 9155-9161 https://doi.org/10.1073/pnas.1605146113
  59. Zhang H, Freitas D, Kim HS et al (2018) Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol 20, 332-343 https://doi.org/10.1038/s41556-018-0040-4
  60. McNamara RP and Dittmer DP (2020) Extracellular vesicles in virus infection and pathogenesis. Curr Opin Virol 44, 129-138 https://doi.org/10.1016/j.coviro.2020.07.014