DOI QR코드

DOI QR Code

Korean Ginseng Berry Polysaccharide Enhances Immunomodulation Activities of Peritoneal Macrophages in Mice with Cyclophosphamide-Induced Immunosuppression

  • JeongUn Choi (Department of Wellness-Bio Industry, Gangneung-Wonju National University) ;
  • Ju Hyun Nam (Department of Wellness-Bio Industry, Gangneung-Wonju National University) ;
  • Weerawan Rod-in (Department of Marine Food Science and Technology, Gangneung-Wonju National University) ;
  • Chaiwat Monmai (Department of Marine Food Science and Technology, Gangneung-Wonju National University) ;
  • A-yeong Jang (Department of Wellness-Bio Industry, Gangneung-Wonju National University) ;
  • SangGuan You (Department of Wellness-Bio Industry, Gangneung-Wonju National University) ;
  • Woo Jung Park (Department of Wellness-Bio Industry, Gangneung-Wonju National University)
  • Received : 2022.11.28
  • Accepted : 2023.03.21
  • Published : 2023.06.28

Abstract

Korean ginseng (Panax ginseng C. A. Meyer), a member of the Araliaceae family, is known as a traditional medicinal plant to have a wide range of health properties. Polysaccharides constitute a major component of Korean ginseng, and its berries exhibit immune-modulating properties. The purpose of this study was to investigate the immune effects of crude polysaccharide (GBPC) extracted from Korean ginseng berry on peritoneal macrophages in mice with cyclophosphamide (CY)- induced immunosuppression. BALB/c mice were divided into eight groups: normal control, normal control + CY, levamisole + CY, ginseng + CY, and four concentrations of 50, 100, 250, and 500 mg/kg BW/day of GBPC + CY. Mice were orally administered with samples for 10 days. Immunosuppression was established by treating mice with CY (80 mg/kg BW/day) through intraperitoneal injection on days 4 to 6. The immune function of peritoneal macrophages was then evaluated. Oral administration of 500 mg/kg BW/day GBPC resulted in proliferation, NO production, and phagocytosis at 100%, 88%, and 91%, respectively, close to the levels of the normal group (100%) of peritoneal macrophages. In CY-treated mice, GBPC of 50-500 mg/kg BW/day also dose-dependently stimulated the proliferation, NO production, and phagocytosis at 56-100%, 47-88%, and 53-91%, respectively, with expression levels of immune-associated genes, such as iNOS, COX-2, IL-1β, IL-6, and TNF-α, of about 0.32 to 2.87-fold, compared to those in the CY group. GBPC could be a potential immunomodulatory material to control peritoneal macrophages under an immunosuppressive condition.

Keywords

Acknowledgement

This research project was supported by the University Emphasis Research Institute Support Program (No. 2018R1A61A03023584), funded by the National Research Foundation of Korea. This research was also supported by Korea Institute of Marine Science & Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (20220042, Korea Sea Grant Program: GangWon Sea Grant).

References

  1. Fujiwara N, Kobayashi K. 2005. Macrophages in inflammation. Inflamm. Allergy Drug Targets. 4: 281-286. https://doi.org/10.2174/1568010054022024
  2. Wang H, Bi H, Gao T, Zhao B, Ni W, Liu J. 2018. A homogalacturonan from Hippophae rhamnoides L. berries enhance immunomodulatory activity through TLR4/MyD88 pathway mediated activation of macrophages. Int. J. Biol. Macromol. 107: 1039-1045. https://doi.org/10.1016/j.ijbiomac.2017.09.083
  3. Zhang X, Goncalves R, Mosser DM. 2008. The isolation and characterization of murine macrophages. Curr. Protoc. Immunol. 83: 1-14. https://doi.org/10.1002/0471142735.im1401s83
  4. Cassado AdA, D'Imperio Lima MR, Bortoluci KR. 2015. Revisiting mouse peritoneal macrophages: heterogeneity, development, and function. Front. Immunol. 6: 225.
  5. Sak K. 2012. Chemotherapy and dietary phytochemical agents. Chemother. Res. Pract. 2012: 282570.
  6. Emadi A, Jones RJ, Brodsky RA. 2009. Cyclophosphamide and cancer: golden anniversary. Nat. Rev. Clin. Oncol. 6: 638-647. https://doi.org/10.1038/nrclinonc.2009.146
  7. Ahlmann M, Hempel G. 2016. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother. Pharmacol. 78: 661-671. https://doi.org/10.1007/s00280-016-3152-1
  8. Ren Z, He C, Fan Y, Si H, Wang Y, Shi Z, et al. 2014. Immune-enhancing activity of polysaccharides from Cyrtomium macrophyllum. Int. J. Biol. Macromol. 70: 590-595. https://doi.org/10.1016/j.ijbiomac.2014.07.044
  9. Guo MZ, Meng M, Feng CC, Wang X, Wang CL. 2019. A novel polysaccharide obtained from Craterellus cornucopioides enhances immunomodulatory activity in immunosuppressive mice models via regulation of the TLR4-NF-κB pathway. Food Funct. 10: 4792-4801. https://doi.org/10.1039/C9FO00201D
  10. Wang H, Xu L, Yu M, Wang Y, Jiang T, Yang S, et al. 2019. Glycosaminoglycan from Apostichopus japonicus induces immunomodulatory activity in cyclophosphamide-treated mice and in macrophages. Int. J. Biol. Macromol. 130: 229-237. https://doi.org/10.1016/j.ijbiomac.2019.02.093
  11. Yu Q, Nie SP, Wang JQ, Huang DF, Li WJ, Xie MY. 2015. Molecular mechanism underlying chemoprotective effects of Ganoderma atrum polysaccharide in cyclophosphamide-induced immunosuppressed mice. J. Funct. Foods 15: 52-60. https://doi.org/10.1016/j.jff.2015.03.015
  12. Shi L. 2016. Bioactivities, isolation and purification methods of polysaccharides from natural products: a review. Int. J. Biol. Macromol. 92: 37-48. https://doi.org/10.1016/j.ijbiomac.2016.06.100
  13. Shi L, Fu Y. 2011. Isolation, purification, and immunomodulatory activity in vitro of three polysaccharides from roots of Cudrania tricuspidata. Acta Biochim. Biophys. Sin. 43: 418-424. https://doi.org/10.1093/abbs/gmr024
  14. Yu XH, Liu Y, Wu XL, Liu LZ, Fu W, Song DD. 2017. Isolation, purification, characterization and immunostimulatory activity of polysaccharides derived from American ginseng. Carbohydr. Polym. 156: 9-18. https://doi.org/10.1016/j.carbpol.2016.08.092
  15. Ren D, Zhao Y, Zheng Q, Alim A, Yang X. 2019. Immunomodulatory effects of an acidic polysaccharide fraction from herbal Gynostemma pentaphyllum tea in RAW264.7 cells. Food Funct. 10: 2186-2197. https://doi.org/10.1039/C9FO00219G
  16. Schepetkin IA, Quinn MT. 2006. Botanical polysaccharides: Macrophage immunomodulation and therapeutic potential. Int. Immunopharmacol. 6: 317-333. https://doi.org/10.1016/j.intimp.2005.10.005
  17. Hao LX, Zhao XH. 2016. Immunomodulatory potentials of the water-soluble yam (Dioscorea opposita Thunb) polysaccharides for the normal and cyclophosphamide-suppressed mice. Food Agr. Immunol. 27: 667-677. https://doi.org/10.1080/09540105.2016.1148666
  18. Cui HY, Wang CL, Wang YR, Li ZJ, Chen MH, Li FJ, et al. 2015. Pleurotus nebrodensis polysaccharide (PN-S) enhances the immunity of immunosuppressed mice. Chin. J. Nat. Med. 13: 760-766. https://doi.org/10.1016/S1875-5364(15)30076-5
  19. Du XF, Jiang CZ, Wu CF, Won EK, Choung SY. 2008. Synergistic immunostimulating activity of pidotimod and red ginseng acidic polysaccharide against cyclophosphamide-induced immunosuppression. Arch. Pharm. Res. 31: 1153-1159. https://doi.org/10.1007/s12272-001-1282-6
  20. Song YR, Sung SK, Jang M, Lim TG, Cho CW, Han CJ, et al. 2018. Enzyme-assisted extraction, chemical characteristics, and immunostimulatory activity of polysaccharides from Korean ginseng (Panax ginseng Meyer). Int. J. Biol. Macromol. 116: 1089-1097. https://doi.org/10.1016/j.ijbiomac.2018.05.132
  21. Zhou R, He D, Xie J, Zhou Q, Zeng H, Li H, et al. 2021. The synergistic effects of polysaccharides and ginsenosides from American ginseng (Panax quinquefolius L.) ameliorating cyclophosphamide-induced intestinal immune disorders and gut barrier dysfunctions based on microbiome-metabolomics analysis. Front. Immunol. 12: 665901.
  22. Choi Kt. 2008. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng C A Meyer. Acta Pharmacol. Sin. 29: 1109-1118. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  23. Lee SY, Kim Yk, Park Ni, Kim C, Lee C, Park SU. 2010. Chemical constituents and biological activities of the berry of Panax ginseng. J. Med. Plants Res. 4: 349-353.
  24. Wang Y, Huang M, Sun R, Pan L. 2015. Extraction, characterization of a Ginseng fruits polysaccharide and its immune modulating activities in rats with Lewis lung carcinoma. Carbohydr. Polym. 127: 215-221. https://doi.org/10.1016/j.carbpol.2015.03.070
  25. Kim YS, Kang KS, Kim SI. 1990. Study on antitumor and immunomodulating activities of polysaccharide fractions from Panax ginseng: comparison of effects of neutral and acidic polysaccharide fraction. Arch. Pharm. Res. 13: 330-337. https://doi.org/10.1007/BF02858168
  26. Zhou X, Shi H, Jiang G, Zhou Y, Xu J. 2014. Antitumor activities of ginseng polysaccharide in C57BL/6 mice with Lewis lung carcinoma. Tumor Biol. 35: 12561-12566. https://doi.org/10.1007/s13277-014-2576-7
  27. Wang L, Huang Y, Yin G, Wang J, Wang P, Chen ZY, et al. 2020. Antimicrobial activities of Asian ginseng, American ginseng, and notoginseng. Phytother. Res. 34: 1226-1236. https://doi.org/10.1002/ptr.6605
  28. Chen F, Huang G. 2019. Antioxidant activity of polysaccharides from different sources of ginseng. Int. J. Biol. Macromol. 125: 906-908. https://doi.org/10.1016/j.ijbiomac.2018.12.134
  29. Sun C, Chen Y, Li X, Tai G, Fan Y, Zhou Y. 2014. Anti-hyperglycemic and anti-oxidative activities of ginseng polysaccharides in STZ-induced diabetic mice. Food Funct. 5: 845-848. https://doi.org/10.1039/c3fo60326a
  30. Lee JH, Lee JS, Chung MS, Kim KH. 2004. In vitro anti-adhesive activity of an acidic polysaccharide from Panax ginseng on Porphyromonas gingivalis binding to erythrocytes. Planta Med. 70: 566-569. https://doi.org/10.1055/s-2004-827160
  31. Lee DY, Park CW, Lee SJ, Park HR, Seo DB, Park JY, et al. 2019. Immunostimulating and antimetastatic effects of polysaccharides purified from ginseng berry. Am. J. Chin. Med. 47: 823-839. https://doi.org/10.1142/S0192415X19500435
  32. Rod-in W, Talapphet N, Monmai C, Jang Ay, You S, Park WJ. 2021. Immune enhancement effects of Korean ginseng berry polysaccharides on RAW264.7 macrophages through MAPK and NF-kB signalling pathways. Food Agr. Immunol. 32: 298-309. https://doi.org/10.1080/09540105.2021.1934419
  33. Nam JH, Choi J, Monmai C, Rod-in W, Jang Ay, You S, et al. 2022. Immune-enhancing effects of crude polysaccharides from Korean ginseng berries on spleens of mice with cyclophosphamide-induced immunosuppression. J. Microbiol. Biotechnol. 32: 256-262. https://doi.org/10.4014/jmb.2110.10021
  34. Chen X-T, Li J, Wang H-L, Cheng W-M, Zhang L, Ge J-F. 2006. Immunomodulating effects of fractioned polysaccharides isolated from Yu-Ping-Feng-Powder in cyclophosphamide-treated mice. Am. J. Chin. Med. 34: 631-641. https://doi.org/10.1142/S0192415X06004168
  35. Kim JE, Monmai C, Rod-in W, Jang AY, You S, Lee SM, et al. 2020. Co-immunomodulatory activities of anionic macromolecules extracted from Codium fragile with red ginseng extract on peritoneal macrophage of immune-suppressed mice. J. Microbiol. Biotechnol. 30: 352-358. https://doi.org/10.4014/jmb.1909.09062
  36. Chen W, Zhang W, Shen W, Wang K. 2010. Effects of the acid polysaccharide fraction isolated from a cultivated Cordyceps sinensis on macrophagesin vitro. Cell. Immunol. 262: 69-74. https://doi.org/10.1016/j.cellimm.2010.01.001
  37. Chen X, Nie W, Fan S, Zhang J, Wang Y, Lu J, et al. 2012. A polysaccharide from Sargassum fusiforme protects against immunosuppression in cyclophosphamide-treated mice. Carbohydr. Polym. 90: 1114-1119. https://doi.org/10.1016/j.carbpol.2012.06.052
  38. Zhang WN, Gong LL, Liu Y, Zhou ZB, Wan CX, Xu JJ, et al. 2020. Immunoenhancement effect of crude polysaccharides of Helvella leucopus on cyclophosphamide-induced immunosuppressive mice. J. Funct. Foods 69: 103942.
  39. Renoux G. 1980. The general immunopharmacology of levamisole. Drugs 20: 89-99. https://doi.org/10.2165/00003495-198020020-00001
  40. Chen LX, Qi YL, Qi Z, Gao K, Gong RZ, Shao ZJ, et al. 2019. A comparative study on the effects of different parts of Panax ginseng on the immune activity of cyclophosphamide-induced immunosuppressed mice. Molecules 24: 1096.
  41. Liu T, Liu F, Peng LW, Chang L, Jiang YM. 2018. The peritoneal macrophages in inflammatory diseases and abdominal cancers. Oncol. Res. 26: 817-826. https://doi.org/10.3727/096504017X15130753659625
  42. Wang C, Yu X, Cao Q, Wang Y, Zheng G, Tan TK, et al. 2013. Characterization of murine macrophages from bone marrow, spleen and peritoneum. BMC Immunol. 14: 6-15. https://doi.org/10.1186/1471-2172-14-6
  43. Rahat M, Hemmerlein B. 2013. Macrophage-tumor cell interactions regulate the function of nitric oxide. Front. Physiol. 4: 144.
  44. Coleman JW. 2001. Nitric oxide in immunity and inflammation. Int. Immunopharmacol. 1: 1397-1406. https://doi.org/10.1016/S1567-5769(01)00086-8
  45. Yang RF, Zhao C, Chen X, Chan SW, Wu JY. 2015. Chemical properties and bioactivities of Goji (Lycium barbarum) polysaccharides extracted by different methods. J. Funct. Foods 17: 903-909. https://doi.org/10.1016/j.jff.2015.06.045