DOI QR코드

DOI QR Code

Alpha-Glucosidase Inhibitory Activity of Saponins Isolated from Vernonia gratiosa Hance

  • Pham Van Cong (Graduate University of Science and Technology, VAST) ;
  • Hoang Le Tuan Anh (Center for Research and Technology Transfer (CRTT), Vietnam Academy of Science and Technology (VAST)) ;
  • Le Ba Vinh (College of Pharmacy, Korea University) ;
  • Yoo Kyong Han (College of Pharmacy, Korea University) ;
  • Nguyen Quang Trung (Center for Research and Technology Transfer (CRTT), Vietnam Academy of Science and Technology (VAST)) ;
  • Bui Quang Minh (Center for Research and Technology Transfer (CRTT), Vietnam Academy of Science and Technology (VAST)) ;
  • Ngo Viet Duc (Center for Research and Technology Transfer (CRTT), Vietnam Academy of Science and Technology (VAST)) ;
  • Tran Minh Ngoc (Traditional Medicine Administration Ministry of Health) ;
  • Nguyen Thi Thu Hien (Hanoi University of Mining and Geology) ;
  • Hoang Duc Manh (National Institute of Medicinal Materials (NIMM)) ;
  • Le Thi Lien (Mientrung Institute for Scientific Research, VAST) ;
  • Ki Yong Lee (College of Pharmacy, Korea University)
  • 투고 : 2022.12.22
  • 심사 : 2023.02.14
  • 발행 : 2023.06.28

초록

Species belonging to the Vernonia (Asteraceae), the largest genus in the tribe Vernonieae (consisting of about 1,000 species), are widely used in food and medicine. These plants are rich sources of bioactive sesquiterpene lactones and steroid saponins, likely including many as yet undiscovered chemical components. A phytochemical investigation resulted in the separation of three new stigmastane-type steroidal saponins (1 - 3), designated as vernogratiosides A-C, from whole plants of V. gratiosa. Their structures were elucidated based on infrared spectroscopy (IR), one-dimensional (1D) and two-dimensional nuclear magnetic resonance (2D NMR), high-resolution electrospray ionization mass spectrometry (HR-ESI-MS), and electronic circular dichroism analyses (ECD), as well as chemical reactivity. Molecular docking analysis of representative saponins with α-glucosidase inhibitory activity was performed. Additionally, the intended substances were tested for their ability to inhibit α-glucosidase activity in a laboratory setting. The results suggested that stigmastane-type steroidal saponins from V. gratiosa are promising candidate antidiabetic agents.

키워드

과제정보

This work was financially supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 104.01-2020.11 and the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2019R1A6A1A03031807 and NRF-2021R1A2C1093814).

참고문헌

  1. Klein S, Gastaldelli A, Yki-Jarvinen H, Scherer PE. 2022. Why does obesity cause diabetes? Cell Metab. 34: 11-20. https://doi.org/10.1016/j.cmet.2021.12.012
  2. Sun H, Saeedi P, Karuranga S, Pinkepank M, Ogurtsova K, Duncan BB, et al. 2022. IDF diabetes atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 183: 109119.
  3. Jalili M, Niroomand M. 2016. Type 2 diabetes mellitus. Tintinalli's emergency medicine, a comprehensive study guide. 8: 1445-1456.
  4. Deshpande AD, Harris-Hayes M, Schootman M. 2008. Epidemiology of diabetes and diabetes-related complications. Phys. Ther. 88: 1254-1264. https://doi.org/10.2522/ptj.20080020
  5. Kim JH, Cho CW, Lee JI, Vinh LB, Kim KT, Cho IS. 2020. An investigation of the inhibitory mechanism of α-glucosidase by chysalodin from Aloe vera. Int. J. Biol. Macromol. 147: 314-318. https://doi.org/10.1016/j.ijbiomac.2020.01.076
  6. Etsassala NG, Badmus JA, Marnewick JL, Egieyeh S, Iwuoha EI, Nchu F, et al. 2022. Alpha-glucosidase and alpha-amylase inhibitory activities, molecular dcking, and antioxidant capacities of Plectranthus ecklonii constituents. Antioxidants 11: 378.
  7. Kim H-Y, Kim JH, Jeong HG, Jin CH. 2021. Anti-diabetic effect of the lupinalbin A compound isolated from Apios americana: In vitro analysis and molecular docking study. Biomed. Rep. 14: 1-5. https://doi.org/10.3892/br.2021.1415
  8. McChesney JD, Venkataraman SK, Henri JT. 2007. Plant natural products: back to the future or into extinction? Phytochemistry 68: 2015-2022. https://doi.org/10.1016/j.phytochem.2007.04.032
  9. Cao TQ, Phong NV, Kim JH, Gao D, Anh HLT, Ngo V-D, et al. 2021. Inhibitory effects of cucurbitane-type triterpenoids from Momordica charantia fruit on lipopolysaccharide-stimulated pro-Inflammatory cytokine production in bone marrow-derived dendritic cells. Molecules 26: 4444.
  10. Vinh LB, Kim JH, Lee JS, Nguyet NTM, Yang SY, Ma JY, et al. 2018. Soluble epoxide hydrolase inhibitory activity of phenolic glycosides from Polygala tenuifolia and in silico approach. Med. Chem. Res. 27: 726-734. https://doi.org/10.1007/s00044-017-2096-2
  11. Sim L, Quezada-Calvillo R, Sterchi EE, Nichols BL, Rose DR. 2008. Human intestinal maltase-glucoamylase: crystal structure of the N-terminal catalytic subunit and basis of inhibition and substrate specificity. J. Mol. Biol. 375: 782-792. https://doi.org/10.1016/j.jmb.2007.10.069
  12. Ahn JH, Ryu SH, Lee S, Yeon SW, Turk A, Han YK, et al. 2021. Aromatic constituents from the leaves of Actinidia arguta with antioxidant and α-glucosidase inhibitory activity. Antioxidants 10: 1896.
  13. Keeley SC, Jones Jr SB. 1979. Distribution of pollen types in Vernonia (Vernonieae: Compositae). Syst. Bot. 195-202.
  14. Jisaka M, Ohigashi H, Takagaki T, Nozaki H, Tada T, Hirota M, et al. 1992. Bitter steroid glucosides, vernoniosides A1, A2, and A3, and related B1 from a possible medicinal plant, Vernonia amygdalina, used by wild chimpanzees. Tetrahedron 48: 625-632. https://doi.org/10.1016/S0040-4020(01)88123-0
  15. Toyang NJ, Verpoorte R. 2013. A review of the medicinal potentials of plants of the genus Vernonia (Asteraceae). J. Ethnopharmacol. 146: 681-723. https://doi.org/10.1016/j.jep.2013.01.040
  16. Van Cong P, Anh HLT, Trung NQ, Quang Minh B, Viet Duc N, Van Dan N, et al. 2022. Isolation, structural elucidation and molecular docking studies against SARS-CoV-2 main protease of new stigmastane-type steroidal glucosides isolated from the whole plants of Vernonia gratiosa. Nat. Prod. Res. In press. doi.org/10.1080/14786419.2022.2042534.
  17. Vinh LB, Phong NV, Ali I, Dan G, Koh YS, Anh HLT, et al. 2020. Identification of potential anti-inflammatory and melanoma cytotoxic compounds from Aegiceras corniculatum. Med. Chem. Res. 29:2020-2027. https://doi.org/10.1007/s00044-020-02613-5
  18. Vinh LB, Heo M, Phong NV, Ali I, Koh YS, Kim YH, et al. 2020. Bioactive compounds from Polygala tenuifolia and their inhibitory effects on lipopolysaccharide-stimulated pro-inflammatory cytokine production in bone marrow-derived dendritic cells. Plants 9: 1240.
  19. Vinh LB, Park JU, Duy LX, Nguyet NTM, Yang SY, Kim YR, et al. 2019. Ginsenosides from Korean red ginseng modulate T cell function via the regulation of NF-AT-mediated IL-2 production. Food Sci. Biotechnol. 28: 237-242. https://doi.org/10.1007/s10068-018-0428-8
  20. Liu J, Ma S, Yu S, Lv H, Li Y, Wu X, et al. 2010. Seven new vernocuminosides from the stem bark of Vernonia cumingiana Benth. Carbohydr. Res. 345: 1156-1162. https://doi.org/10.1016/j.carres.2010.03.039
  21. Ahn JH, Park Y, Yeon SW, Jo YH, Han YK, Turk A, et al. 2020. Phenylpropanoid-conjugated triterpenoids from the leaves of Actinidia arguta and their inhibitory activity on α-glucosidase. J. Nat. Prod. 83: 1416-1423. https://doi.org/10.1021/acs.jnatprod.9b00643
  22. Sim L, Willemsma C, Mohan S, Naim HY, Pinto BM, Rose DR. 2010. Structural basis for substrate selectivity in human maltase-glucoamylase and sucrase-isomaltase N-terminal domains. J. Biol. Chem. 285: 17763-17770. https://doi.org/10.1074/jbc.M109.078980
  23. Vinh LB, Nguyet NTM, Ye L, Dan G, Phong NV, Anh HLT, et al. 2020. Enhancement of an in vivo anti-inflammatory activity of oleanolic acid through glycosylation occurring naturally in Stauntonia hexaphylla. Molecules 25: 3699.
  24. Vinh LB, Jang HJ, Phong NV, Dan G, Cho KW, Kim YH, et al. 2019. Bioactive triterpene glycosides from the fruit of Stauntonia hexaphylla and insights into the molecular mechanism of its inflammatory effects. Bioog. Med. Chem. Lett. 29: 2085-2089. https://doi.org/10.1016/j.bmcl.2019.07.010
  25. Vinh LB, Jang HJ, Phong NV, Cho K, Park SS, Kang JS, et al. 2019. Isolation, structural elucidation, and insights into the anti-inflammatory effects of triterpene saponins from the leaves of Stauntonia hexaphylla. Bioog. Med. Chem. Lett. 29: 965-969. https://doi.org/10.1016/j.bmcl.2019.02.022
  26. Vinh LB, Lee Y, Han YK, Kang JS, Park JU, Kim YR, et al. 2017. Two new dammarane-type triterpene saponins from Korean red ginseng and their anti-inflammatory effects. Bioorg. Med. Chem. Lett. 27: 5149-5153. https://doi.org/10.1016/j.bmcl.2017.10.058
  27. Phong NV, Oanh VT, Yang SY, Choi JS, Min BS, Kim JA. 2021. PTP1B inhibition studies of biological active phloroglucinols from the rhizomes of Dryopteris crassirhizoma: Kinetic properties and molecular docking simulation. Int. J. Biol. Macromol. 188: 719-728. https://doi.org/10.1016/j.ijbiomac.2021.08.091