DOI QR코드

DOI QR Code

Characterization of Natural Compounds as Inhibitors of NS1 Endonuclease from Canine Parvovirus Type 2

  • So-Hyung Kwak (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Hayeong Kim (The Institute of Food Industrialization, Institutes of Green Bio Science and Technology, Seoul National University) ;
  • Hyeli Yun (Graduate School of International Agricultural Technology, Seoul National University) ;
  • Juho Lim (Graduate School of International Agricultural Technology, Seoul National University) ;
  • Dong-Hyun Kang (Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University) ;
  • Doman Kim (The Institute of Food Industrialization, Institutes of Green Bio Science and Technology, Seoul National University)
  • Received : 2022.11.22
  • Accepted : 2023.01.30
  • Published : 2023.06.28

Abstract

Canine parvovirus type 2 (CPV-2) has high morbidity and mortality rates in canines. Nonstructural protein 1 (NS1) of CPV-2 has endonuclease activity, initiates viral DNA replication, and is highly conserved. Thus, it is a promising target for antiviral inhibitor development. We overexpressed a 41.9 kDa active recombinant endonuclease in Escherichia coli and designed a nicking assay using carboxyfluorescein and quencher-linked ssDNA as substrates. The optimal temperature and pH of the endonuclease were 37℃ and pH 7, respectively. Curcumin, bisdemethoxycurcumin, demethoxycurcumin, linoleic acid, tannic acid, and α-tocopherol inhibited CPV-2 NS1 endonuclease with IC50 values of 0.29 to 8.03 µM. The extracted turmeric, yerba mate, and sesame cake suppressed CPV-2 NS1 endonuclease with IC50 values of 1.48, 7.09, and 52.67 ㎍/ml, respectively. The binding affinity between curcumin, the strongest inhibitor, and CPV-2 NS1 endonuclease by molecular docking was -6.4 kcal/mol. Curcumin inhibited CPV-2 NS1 endonuclease via numerous hydrophobic interactions and two hydrogen bonds with Lys97 and Pro111 in the allosteric site. These results suggest that adding curcuminoids, linoleic acid, tannic acid, α-tocopherol, extracted turmeric, sesame cake, and yerba to the diet could prevent CPV-2 infection.

Keywords

Acknowledgement

This study was supported by a grant from the National Research Foundation of Korea, Republic of Korea (2022R1I1A1A01069773) awarded to HY Kim, (2022R1F1A106343411) awarded to D Kim, and (2021R1A6A3A13042816) awarded to SH Kwak. This study was also funded by the Technology Innovation Program (20009663), the Ministry of Trade, Industry & Energy (MOTIE, Republic of Korea), and the OTTOGI Corporation, Republic of Korea, through the Research and Publication Project.

References

  1. Nandi S, Kumar M. 2010. Canine parvovirus: current perspective. Indian J. Virol. 21: 31-44. https://doi.org/10.1007/s13337-010-0007-y
  2. Parrish CR. 1999. Host range relationships and the evolution of canine parvovirus. Vet. Microbiol. 69: 29-40. https://doi.org/10.1016/S0378-1135(99)00084-X
  3. Hoelzer K, Parrish CR. 2010. The emergence of parvoviruses of carnivores. Vet. Res. 41: 39.
  4. Sykes JE. 2014. Canine parvovirus infections and other viral enteritides. Canine Feline Infect. Dis. 2014: 141-151. https://doi.org/10.1016/B978-1-4377-0795-3.00014-4
  5. Decaro N, Buonavoglia C, Barrs V. 2020. Canine parvovirus vaccination and immunisation failures: are we far from disease eradication? Vet. Microbiol. 247: 108760.
  6. Parrish CR, Carmichael LE, Antczak DF. 1982. Antigenic relationships between canine parvovirus type-2, feline panleukopenia virus and mink enteritis virus using conventional antisera and monoclonal-antibodies. Arch. Virol. 72: 267-278. https://doi.org/10.1007/BF01315223
  7. Decaro N, Buonavoglia C. 2012. Canine parvovirus-a review of epidemiological and diagnostic aspects, with emphasis on type 2c. Vet. Microbiol. 155: 1-12. https://doi.org/10.1016/j.vetmic.2011.09.007
  8. Reed AP, Jones EV, Miller TJ. 1988. Nucleotide sequence and genome organization of canine parvovirus. J. Virol. 62: 266-276. https://doi.org/10.1128/jvi.62.1.266-276.1988
  9. Chen B, Zhang X, Zhu J, Liao L, Bao E. 2021. Molecular epidemiological survey of canine parvovirus circulating in china from 2014 to 2019. Pathogens 10: 588.
  10. Zhao W, Wang X, Li Y, Li Y. 2020. Administration with vaccinia virus encoding canine parvovirus 2 vp2 elicits systemic immune responses in mice and dogs. Viral Immunol. 33: 434-443. https://doi.org/10.1089/vim.2019.0164
  11. Chang D, Liu Y, Chen Y, Hu X, Burov A, Puzyr A, et al. 2020. Study of the immunogenicity of the VP2 protein of canine parvovirus produced using an improved Baculovirus expression system. BMC Vet. Res. 16: 202.
  12. Hao X, Li Y, Xiao X, Chen B, Zhou P, Li S. 2022. The changes in canine parvovirus variants over the years. Int. J. Mol. Sci. 23: 11540.
  13. Remond M, Boireau P, Lebreton F. 1992. Partial DNA cloning and sequencing of a canine parvovirus vaccine strain: application of nucleic acid hybridization to the diagnosis of canine parvovirus disease. Arch. Virol. 127: 257-269. https://doi.org/10.1007/BF01309589
  14. Tewary SK, Zhao H, Shen W, Qiu J, Tang L. 2013. Structure of the NS1 protein N-terminal origin recognition/nickase domain from the emerging human bocavirus. J. Virol. 87: 11487-11493. https://doi.org/10.1128/JVI.01770-13
  15. Parrish CR, Kawaoka Y. 2005. The origins of new pandemic viruses: the acquisition of new host ranges by canine parvovirus and influenza A viruses. Annu. Rev. Microbiol. 59: 553-586. https://doi.org/10.1146/annurev.micro.59.030804.121059
  16. Arora R, Malla WA, Tyagi A, Mahajan S, Sajjanar B, Tiwari AK. 2021. Canine parvovirus and its non-structural gene 1 as oncolytic agents: mechanism of action and induction of anti-tumor immune response. Front. Oncol. 11: 648873.
  17. Xu P, Ganaie SS, Wang X, Wang Z, Kleiboeker S, Horton NC, et al. 2018. Endonuclease activity inhibition of the NS1 protein of parvovirus B19 as a novel target for antiviral drug development. Antimicrob. Agents Chemother. 63: e01879-01818.
  18. Viana LM, Mothe CG, Mothe MG. 2020. Natural food for domestic animals: a national and international technological review. Res. Vet. Sci. 130: 11-18. https://doi.org/10.1016/j.rvsc.2020.02.008
  19. Gee NR, Rodriguez KE, Fine AH, Trammell JP. 2021. Dogs supporting human health and well-being: a biopsychosocial approach. Front. Vet. Sci. 8: 630465.
  20. Webb B, Sali A. 2016. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics 54: 5-6. https://doi.org/10.1002/cpbi.3
  21. Tian W, Chen C, Lei X, Zhao J, Liang J. 2018. CASTp 3.0: computed atlas of surface topography of proteins. Nucleic Acids Res. 46: W363-W367. https://doi.org/10.1093/nar/gky473
  22. Trott O, Olson AJ. 2010. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31: 455-461. https://doi.org/10.1002/jcc.21334
  23. Eberhardt J, Santos-Martins D, Tillack AF, Forli S. 2021. AutoDock Vina 1.2. 0: New docking methods, expanded force field, and python bindings. J. Chem. Inf. Model. 61: 3891-3898. https://doi.org/10.1021/acs.jcim.1c00203
  24. Nguyen TTH, Woo H-J, Kang H-K, Nguyen VD, Kim Y-M, Kim D-W, et al. 2012. Flavonoid-mediated inhibition of SARS coronavirus 3C-like protease expressed in Pichia pastoris. Biotechnol. Lett. 34: 831-838. https://doi.org/10.1007/s10529-011-0845-8
  25. Wallace AC, Laskowski RA, Thornton JM. 1995. LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. Protein Eng. 8: 127-134. https://doi.org/10.1093/protein/8.2.127
  26. Tattersall P, Ward DC. 1976. Rolling hairpin model for replication of parvovirus and linear chromosomal DNA. Nature 263: 106-109. https://doi.org/10.1038/263106a0
  27. Luo Y, Qiu J. 2015. Human parvovirus B19: a mechanistic overview of infection and DNA replication. Future Virol. 10: 155-167. https://doi.org/10.2217/fvl.14.103
  28. Wang X, Zhang J, Huo S, Zhang Y, Wu F, Cui D, et al. 2020. Development of a monoclonal antibody against canine parvovirus NS1 protein and investigation of NS1 dynamics and localization in CPV-infected cells. Protein Expr. Purif. 174: 105682.
  29. Kumar GR, Saxena S, Saxena L, Chaturvedi U, Santra L, Kumar R, et al. 2012. In vitro expression studies of non structural 1 protein of Canine Parvo virus 2 by polyclonal antiserum raised against CPV2-NS1 protein expressed in Escherichia coli as an antigen. Indian J. Exp. Biol. 50: 618-624.
  30. Sandur SK, Pandey MK, Sung B, Ahn KS, Murakami A, Sethi G, et al. 2007. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis 28: 1765-1773. https://doi.org/10.1093/carcin/bgm123
  31. Galli GM, Da Silva AS, Biazus AH, Reis JH, Boiago MM, Topazio JP, et al. 2018. Feed addition of curcumin to laying hens showed anticoccidial effect, and improved egg quality and animal health. Res. Vet. Sci. 118: 101-106. https://doi.org/10.1016/j.rvsc.2018.01.022
  32. Jaguezeski AM, Perin G, Bottari NB, Wagner R, Fagundes MB, Schetinger MRC, et al. 2018. Addition of curcumin to the diet of dairy sheep improves health, performance and milk quality. Anim. Feed Sci. Technol. 246: 144-157. https://doi.org/10.1016/j.anifeedsci.2018.10.010
  33. Molosse V, Souza CF, Baldissera MD, Glombowsky P, Campigotto G, Cazaratto CJ, et al. 2019. Diet supplemented with curcumin for nursing lambs improves animal growth, energetic metabolism, and performance of the antioxidant and immune systems. Small Ruminant Res. 170: 74-81.
  34. Campigotto G, Alba DF, Sulzbach MM, Dos Santos DS, Souza CF, Baldissera MD, et al. 2020. Dog food production using curcumin as antioxidant: effects of intake on animal growth, health and feed conservation. Arch. Anim. Nutr. 74: 397-413. https://doi.org/10.1080/1745039X.2020.1769442
  35. Ak T, Gulcin I. 2008. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 174: 27-37. https://doi.org/10.1016/j.cbi.2008.05.003
  36. Adamczak A, Ozarowski M, Karpinski TM. 2020. Curcumin, a natural antimicrobial agent with strain-specific activity. Pharmaceuticals (Basel) 13: 153
  37. Aggarwal S, Ichikawa H, Takada Y, Sandur SK, Shishodia S, Aggarwal BB. 2006. Curcumin (diferuloylmethane) down-regulates expression of cell proliferation and antiapoptotic and metastatic gene products through suppression of IκBα kinase and Akt activation. Mol. Pharmacol. 69: 195-206. https://doi.org/10.1124/mol.105.017400
  38. Wacal C, Ogata N, Basalirwa D, Sasagawa D, Kato M, Handa T, et al. 2019. Fatty acid composition of sesame (Sesamum indicum L.) seeds in relation to yield and soil chemical properties on continuously monocropped upland fields converted from paddy fields. Agronomy 9: 801.
  39. Melo D, Alvarez-Orti M, Nunes MA, Costa AS, Machado S, Alves RC, et al. 2021. Whole or defatted sesame seeds (Sesamum indicum L.)? The effect of cold pressing on oil and cake quality. Foods 10: 2108.
  40. Obeidat BS, Kridli RT, Mahmoud KZ, Obeidat MD, Haddad SG, Subih HS, et al. 2019. Replacing soybean meal with sesame meal in the diets of lactating awassi ewes suckling single lambs: nutrient digestibility, milk production, and lamb growth. Animals-Basel. 9: 157.
  41. Additives EPo, Feed PoSuiA. 2014. Scientific Opinion on the safety and efficacy of tannic acid when used as feed flavouring for all animal species. EFSA J. 12: 3828.
  42. Yang K, Jian S, Wen C, Guo D, Liao P, Wen J, et al. 2022. Gallnut tannic acid exerts anti-stress effects on stress-induced inflammatory response, dysbiotic gut microbiota, and alterations of serum metabolic profile in beagle dogs. Front. Nutr. 9: 847966.
  43. Gulcin I, Huyut Z, Elmastas M, Aboul-Enein HY. 2010. Radical scavenging and antioxidant activity of tannic acid. Arab. J. Chem. 3: 43-53. https://doi.org/10.1016/j.arabjc.2009.12.008
  44. Pizarro F, Olivares M, Hertrampf E, Walter T. 1994. Factors which modify the nutritional state of iron: tannin content of herbal teas. Arch. Latinoam. Nutr. 44: 277-280.
  45. Berte KA, Beux MR, Spada PK, Salvador M, Hoffmann-Ribani R. 2011. Chemical composition and antioxidant activity of yerba-mate (Ilex paraguariensis A. St.-Hil., Aquifoliaceae) extract as obtained by spray drying. J. Agric. Food Chem. 59: 5523-5527. https://doi.org/10.1021/jf2008343
  46. Butiuk AP, Martos MA, Adachi O, Hours RA. 2016. Study of the chlorogenic acid content in yerba mate (Ilex paraguariensis St. Hil.): Effect of plant fraction, processing step and harvesting season. J. Appl. Res. Med. Aromat. Plants 3: 27-33.
  47. Mateos R, Baeza G, Martinez-Lopez S, Sarria B, Bravo L. 2017. LC-MSn characterization of saponins in mate (Ilex paraguariens, St. Hil) and their quantification by HPLC-DAD. J. Food Compos. Anal. 63: 164-170. https://doi.org/10.1016/j.jfca.2017.08.003
  48. Nguyen TTH, Si J, Kang C, Chung B, Chung D, Kim D. 2017. Facile preparation of water soluble curcuminoids extracted from turmeric (Curcuma longa L.) powder by using steviol glucosides. Food Chem. 214: 366-373. https://doi.org/10.1016/j.foodchem.2016.07.102
  49. Marchiori MS, Oliveira RC, Souza CF, Baldissera MD, Ribeiro QM, Wagner R, et al. 2019. Curcumin in the diet of quail in cold stress improves performance and egg quality. Anim. Feed Sci. Technol. 254: 114192.