Acknowledgement
The authors are thankful to the Ningxia Vegetable High-Quality Development Technology Center support of key technology research and development (NGSB-2021-8-05).
References
- Gao JX, Pei HX, Xie H. 2020. Synergistic effects of organic fertilizer and corn straw on microorganisms of pepper continuous cropping soil in China. Bioengineered 11: 1258-1268. https://doi.org/10.1080/21655979.2020.1840753
- Zeng JR, Liu JZ, Lu CH, Ou XH, Luo KK, Li CM, et al. 2020. Intercropping with turmeric or ginger reduce the continuous cropping obstacles that affect Pogostemon cablin (Patchouli). Front. Microbiol. 11: 579719.
- Ding S, Zhou DP, Wei HW, Wu SH, Xie B. 2021. Alleviating soil degradation caused by watermelon continuous cropping obstacle: application of urban waste compost. Chemosphere 262: 128387.
- Chen LJ, Li DJ, Shao Y, Adni J, Wang H, Liu YQ, et al. 2020. Comparative analysis of soil microbiome profiles in the companion planting of white clover and orchard grass using 16S rRNA gene sequencing data. Front. Plant Sci. 11: 538311.
- Acosta-Martinez V, Cotton J. 2017. Lasting effects of soil health improvements with management changes in cotton-based cropping systems in a sandy soil. Biol. Fert. Soils 53: 533-546 https://doi.org/10.1007/s00374-017-1192-2
- Li S, Wu FZ. 2018. Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Front. Microbiol. 9: 1521.
- Xu WH, Liu D, Wu FZ, Liu SW. 2015. Root exudates of wheat are involved in suppression of Fusarium wilt in watermelon in watermelon-wheat companion cropping. Eur. J. Plant Pathol. 141: 209-216. https://doi.org/10.1007/s10658-014-0528-0
- Li L, Zhang FS, Li XL, Christie P, Sun JH, Yang SC, et al. 2003. Interspecific facilitation of nutrient uptake by intercropped maize and faba bean. Nutr. Cycl. Agroecosys 65: 61-71. https://doi.org/10.1023/A:1021885032241
- Xiao XM, Cheng ZH, Meng HW, Liu LH, Li HZ, Dong YX. 2013. Intercropping of green garlic (Allium sativum L.) induces nutrient concentration changes in the soil and plants in continuously cropped cucumber (Cucumis sativus L.) in a plastic tunnel. PLoS One 8: e62173.
- Fu XP, Li CX, Zhou XG, Liu SW, Wu FZ. 2016. Physiological response and sulfur metabolism of the V. dahliae-infected tomato plants in tomato/potato onion companion cropping. Sci. Rep. 6: 36445.
- Gao DM, Zhou XG, Duan YD, Fu XP, Wu FZ. 2017. Wheat cover crop promoted cucumber seedling growth through regulating soil nutrient resources or soil microbial communities? Plant Soil 418: 459-475. https://doi.org/10.1007/s11104-017-3307-9
- Makoi JHJR, Chimphango SBM, Dakora FD. 2010. Elevated levels of acid and alkaline phosphatase activity in roots and rhizosphere of cowpea (Vigna unguiculata L. Walp.) genotypes grown in mixed culture and at different densities with sorghum (Sorghum bicolor L.). Crop Pasture Sci. 61: 279-286. https://doi.org/10.1071/CP09212
- Kirk JL, Beaudette LA, Hart M, Moutoglis P, Khironomos JN, Lee H, et al. 2004. Methods of studying soil microbial diversity. J. Microbiol. Meth. 58: 169-188. https://doi.org/10.1016/j.mimet.2004.04.006
- Dai CC, Chen Y, Wang XX, Li PD. 2013. Effects of intercropping of peanut with the medicinal plant Atractylodes lancea on soil microecology and peanut yield in subtropical China. Agroforest. Syst. 87: 417-426. https://doi.org/10.1007/s10457-012-9563-z
- Zhou WJ, Zhang YZ, Wang KR, Li HS, Hao YJ, Liu X. 2009. Plant phosphorus uptake in a soybean-citrus intercropping system in the red soil hilly region of South China. Pedosphere 19: 244-250. https://doi.org/10.1016/S1002-0160(09)60114-4
- Finney DM, Kaye JP. 2017. Functional diversity in cover crop polycultures increases multifunctionality of an agricultural system. J. Appl. Ecol. 54: 509-517. https://doi.org/10.1111/1365-2664.12765
- Xiao XM, Cheng ZH, Meng HW, Khan MA, Li HZ. 2012. Intercropping with garlic alleviated continuous cropping obstacle of cucumber in plastic tunnel. Acta. Agr. Scand B-S. P. 62: 696-705. https://doi.org/10.1080/09064710.2012.697571
- Zhang MM, Wang N, Hu YB, Sun GY. 2018. Changes in soil physicochemical properties and soil bacterial community in mulberry (Morus alba L.)/alfalfa (Medicago sativa L.) intercropping system. Microbiologyopen 7: e00555.
- van Elsas JD, Chiurazzi M, Mallon CA, Elhottova D, Kristufek V, Salles JF. 2012. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc. Natl. Acad. Sci. USA 109: 1159-1164. https://doi.org/10.1073/pnas.1109326109
- Garbeva P, Postma J, van Veen JA, van Elsas JD. 2006. Effect of above-ground plant species on soil microbial community structure and its impact on suppression of Rhizoctonia solani AG3. Environ. Microbiol. 8: 233-246. https://doi.org/10.1111/j.1462-2920.2005.00888.x
- Jin X, Zhang JH, Shi YJ, Wu FZ, Zhou XG. 2019. Green manures of Indian mustard and wild rocket enhance cucumber resistance to Fusarium wilt through modulating rhizosphere bacterial community composition. Plant Soil 441: 283-300. https://doi.org/10.1007/s11104-019-04118-6
- Ren LX, Su SM, Yang XM, Xu YC, Huang QW, Shen QR. 2008. Intercropping with aerobic rice suppressed Fusarium wilt in watermelon. Soil Biol. Biochem. 40: 834-844. https://doi.org/10.1016/j.soilbio.2007.11.003
- Zhou XG, Yu GB, Wu FZ. 2011. Effects of intercropping cucumber with onion or garlic on soil enzyme activities, microbial communities and cucumber yield. Eur. J. Soil Biol. 47: 279-287. https://doi.org/10.1016/j.ejsobi.2011.07.001
- Dennis PG, Miller AJ, Hirsch PR. 2010. Are root exudates more important than other sources of rhizodeposits in structuring rhizosphere bacterial communities? FEMS Microbiol. Ecol. 72: 313-327. https://doi.org/10.1111/j.1574-6941.2010.00860.x
- Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, et al. 2013. Soil enzymes in a changing environment: Current knowledge and future directions. Soil Biol. Biochem. 58: 216-234. https://doi.org/10.1016/j.soilbio.2012.11.009
- He Y, Ding N, Shi JC, Wu M, Liao H, Xu JM. 2013. Profiling of microbial PLFAs: Implications for interspecific interactions due to intercropping which increase phosphorus uptake in phosphorus limited acidic soils. Soil Biol. Biochem. 57: 625-634. https://doi.org/10.1016/j.soilbio.2012.07.027
- Song YN, Zhang FS, Marschner P, Fan FL, Gao HM, Bao XG, et al. 2007. Effect of intercropping on crop yield and chemical and microbiological properties in rhizosphere of wheat (Triticum aestivum L.), maize (Zea mays L.), and faba bean (Vicia faba L.). Biol. Fert. Soils 43: 565-574. https://doi.org/10.1007/s00374-006-0139-9
- Li Y, Feng H, Chen J, Lu J, Wu W, Liu X, et al. 2022. Biochar incorporation increases winter wheat (Triticum aestivum L.) production with significantly improving soil enzyme activities at jointing stage. Catena 211: 105979.
- Guo MJ, Wu FH, Hao GG, Qi Q, Li R, Li N, et al. 2017. Bacillus subtilis improves immunity and disease resistance in rabbits. Front. Immunol. 8: 354.
- Magoc T, Salzberg SL. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27: 2957-2963. https://doi.org/10.1093/bioinformatics/btr507
- Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7: 335-336. https://doi.org/10.1038/nmeth.f.303
- Edgar RC. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10: 996-998. https://doi.org/10.1038/nmeth.2604
- Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig WG, Peplies J, et al. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35: 7188-7196. https://doi.org/10.1093/nar/gkm864
- Nilsson RH, Larsson KH, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, et al. 2019. The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47: D259-D264. https://doi.org/10.1093/nar/gky1022
- Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12: R60.
- Du PQ, He HR, Wu XH, Xu J, Dong FS, Liu XG, et al. 2021. Mesosulfuron-methyl influenced biodegradability potential and N transformation of soil. J. Hazard. Mater. 416: 125770.
- Zhang HP, Song JJ, Zhang ZH, Zhang QK, Chen SY, Mei JJ, et al. 2021. Exposure to fungicide difenoconazole reduces the soil bacterial community diversity and the co-occurrence network complexity. J. Hazard. Mater. 405: 124208.
- Wu CC, Wang ZN, Ma Y, Luo JY, Gao XK, Ning J, et al. 2021. Influence of the neonicotinoid insecticide thiamethoxam on soil bacterial community composition and metabolic function. J. Hazard. Mater. 405: 124275.
- Blaise D, Velmourougane K, Santosh S, Manikandan A. 2021. Intercrop mulch affects soil biology and microbial diversity in rainfed transgenic Bt cotton hybrids. Sci. Total Environ. 794: 148787.
- Yang CD, Lu SG. 2022. Straw and straw biochar differently affect phosphorus availability, enzyme activity and microbial functional genes in an Ultisol. Sci. Total Environ. 805: 150325.
- Hiradate S, Morita S, Furubayashi A, Fujii Y, Harada J. 2005. Plant growth inhibition by cis-cinnamoyl glucosides and cis-cinnamic acid. J. Chem. Ecol. 31: 591-601. https://doi.org/10.1007/s10886-005-2047-0
- Curtright AJ, Tiemann LK. 2021. Intercropping increases soil extracellular enzyme activity: a meta-analysis. Agr. Ecosyst. Environ. 319: 107284.
- Wang B, Shen H, Yang X, Guo T, Zhang B, Yan W. 2013. Effects of chitinase-transgenic (McChit1) tobacco on the rhizospheric microflora and enzyme activities of the purple soil. Plant Soil Environ. 59: 241-246. https://doi.org/10.17221/704/2012-PSE
- Sun SY, Sun H, Zhang DS, Zhang JF, Cai ZY, Qin GH, et al. 2019. Response of soil microbes to vegetation restoration in coal mining subsidence areas at Huaibei Coal Mine, China. Int. J. Environ. Res. Public Health 16: 1757.
- German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD. 2011. Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol. Biochem. 43: 1387-1397. https://doi.org/10.1016/j.soilbio.2011.03.017
- Li YF, Wang YQ, Zhang WQ. 2021. Impact of simulated acid rain on the composition of soil microbial communities and soil respiration in typical subtropical forests in Southwest China. Ecotox. Environ. Safe 215: 112152.
- Yin YA, Yang C, Tang JR, Gu J, Li HC, Duan ML, et al. 2021. Bamboo charcoal enhances cellulase and urease activities during chicken manure composting: Roles of the bacterial community and metabolic functions. J. Environ. Sci. 108: 84-95. https://doi.org/10.1016/j.jes.2021.02.007
- Delgado-Baquerizo M, Maestre FT, Reich PB, Jeffries TC, Gaitan JJ, Encinar D, et al. 2016. Microbial diversity drives multifunctionality in terrestrial ecosystems. Nat. Commun. 7: 10541.
- Wagg C, Bender SF, Widmer F, van der Heijden MGA. 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 111: 5266-5270. https://doi.org/10.1073/pnas.1320054111
- King AE, Hofmockel KS. 2017. Diversified cropping systems support greater microbial cycling and retention of carbon and nitrogen. Agr. Ecosyst. Environ. 240: 66-76 https://doi.org/10.1016/j.agee.2017.01.040
- Lian TX, Mu YH, Jin J, Ma QB, Cheng YB, Cai ZD, Nian H. 2019. Impact of intercropping on the coupling between soil microbial community structure, activity, and nutrient-use efficiencies. PeeJ. 7: e6412.
- Li NH, Gao DM, Zhou XG, Chen SC, Li CX, Wu FZ. 2020. Intercropping with potato-onion enhanced the soil microbial diversity of tomato. Microorganisms 8: 834
- Park JH, Han HJ. 2019. Effect of tungsten-resistant bacteria on uptake of tungsten by lettuce and tungsten speciation in plants. J. Hazard. Mater. 379: 120825.
- Samad A, Trognitz F, Compant S, Antonielli L, Sessitsch A. 2017. Shared and host-specific microbiome diversity and functioning of grapevine and accompanying weed plants. Environ. Microbiol. 19: 1407-1424. https://doi.org/10.1111/1462-2920.13618
- Zheng W, Gong QL, Zhao ZY, Liu J, Zhai BN, Wang ZH, et al. 2018. Changes in the soil bacterial community structure and enzyme activities after intercrop mulch with cover crop for eight years in an orchard. Eur. J. Soil Biol. 86: 34-41. https://doi.org/10.1016/j.ejsobi.2018.01.009
- Deng JJ, Bai XJ, Zhou YB, Zhu WX, Yin Y. 2020. Variations of soil microbial communities accompanied by different vegetation restoration in an open-cut iron mining area. Sci. Total Environ. 704: 135243.
- Wu T, Qin Y, Li M. 2021. Intercropping of tea (Camellia sinensis L.) and chinese chestnut: variation in the structure of rhizosphere bacterial communities. J. Soil Sci. Plant Nut. 21: 2178-2190. https://doi.org/10.1007/s42729-021-00513-0
- Bian FY, Zhong ZK, Li CZ, Zhang XP, Gu LJ, Huang ZC, et al. 2021. Intercropping improves heavy metal phytoremediation efficiency through changing properties of rhizosphere soil in bamboo plantation. J. Hazard. Mater. 416: 125898.
- Jiang B, Adebayo A, Jia JL, Xing Y, Deng SQ, Guo LM, et al. 2019. Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community. J. Hazard. Mater. 362: 187-195. https://doi.org/10.1016/j.jhazmat.2018.08.060
- Perez-Izquierdo L, Zabal-Aguirre M, Gonzalez-Martinez SC, Buee M, Verdu M, Rincon A, et al. 2019. Plant intraspecific variation modulates nutrient cycling through its below ground rhizospheric microbiome. J. Ecol. 107: 1594-1605 https://doi.org/10.1111/1365-2745.13202
- Devos DP. 2021. Reconciling asgardarchaeota phylogenetic proximity to Eukaryotes and Planctomycetes cellular features in the evolution of life. Mol. Biol. Evol. 38: 3531-3542. https://doi.org/10.1093/molbev/msab186
- Boedeker C, Schuler M, Reintjes G, Jeske O, van Teeseling MCF, Jogler M, et al. 2017. Determining the bacterial cell biology of Planctomycetes. Nat. Commun. 8: 14853.
- Lin YB, Ye YM, Hu YM, Shi HK. 2019. The variation in microbial community structure under different heavy metal contamination levels in paddy soils. Ecotox. Environ. Safe 180: 557-564. https://doi.org/10.1016/j.ecoenv.2019.05.057
- Al-Sadi AM, Al-Khatri B, Nasehi A, Al-Shihi M, Al-Mahmooli IH, Maharachchikumbura SSN. 2017. High fungal diversity and dominance by Ascomycota in dam reservoir soils of arid climates. Int. J. Agric. Biol. 19: 682-688. https://doi.org/10.17957/IJAB/15.0328
- Saldanha AV, Gontijo LM, Carvalho RMR, Vasconcelos CJ, Correa AS, Gandra RLR. 2019. Companion planting enhances pest suppression despite reducing parasitoid emergence. Basic Appl. Ecol. 41: 45-55. https://doi.org/10.1016/j.baae.2019.10.002
- Zheng W, Zhao ZY, Gong QL, Zhai BN, Li ZY. 2018. Responses of fungal-bacterial community and network to organic inputs vary among different spatial habitats in soil. Soil Biol. Biochem. 125: 54-63. https://doi.org/10.1016/j.soilbio.2018.06.029
- Pivato B, Semblat A, Guegan T, Jacquiod S, Martin J, Deau F, et al. 2021. Rhizosphere bacterial networks, but not diversity, are impacted by pea-wheat intercropping. Front. Microbiol. 12: 674556.
- Chen XD, Jiang N, Condron LM, Dunfield KE, Chen ZH, Wang JK, et al. 2019. Impact of long-term phosphorus fertilizer inputs on bacterial phoD gene community in a maize field, Northeast China. Sci. Total Environ. 669: 1011-1018. https://doi.org/10.1016/j.scitotenv.2019.03.172
- Liu JS, Ma Q, Hui XL, Ran JY, Ma QX, Wang XS, et al. 2020. Long-term high-P fertilizer input decreased the total bacterial diversity but not phoD-harboring bacteria in wheat rhizosphere soil with available-P deficiency. Soil Biol. Biochem. 149: 107918.