Acknowledgement
The work was supported by the National Institute of Agricultural Sciences (PJ015298), the Korea Institute of Biosciences and Biotechnology (KRIBB) research initiative program (KGM 5232322) and the National Research Foundation of Korea (NRF) Grant funded of the Korea government (MSIT) (No. NRF-2020R1A2C2012111) to M.-K. L., and was also supported by a grant from the National Institute of Environment Research (NIER), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIER-2021-01-01-044) to Y.-H. K.
References
- Ash C FJ, Wallbanks S, Collins MD. 1991. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett. Appl. Microbiol. 13: 202-206. https://doi.org/10.1111/j.1472-765X.1991.tb00608.x
- Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. 1997. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol. 47: 289-298. https://doi.org/10.1099/00207713-47-2-289
- Behrendt U, Schumann P, Stieglmeier M, Pukall R, Augustin J, Sproer C, et al. 2010. Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity--description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room. Syst. Appl. Microbiol. 33: 328-336. https://doi.org/10.1016/j.syapm.2010.07.004
- Lal S, Tabacchioni S. 2009. Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J. Microbiol. 49: 2-10. https://doi.org/10.1007/s12088-009-0008-y
- Shishido M, Massicotte, H. B., and Chanway, C. P. 1996. Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann. Bot. 77: 433-442. https://doi.org/10.1006/anbo.1996.0053
- Guemouri-Athmani S, Berge O, Bourrain M, Mavingui P, Thiery JM, Bhatnagar T, et al. 2000. Diversity of Paenibacillus polymyxa populations in the rhizosphereof wheat (Triticum durum) in Algerian soils. Eur. J. Soil Biol. 36: 149-159. https://doi.org/10.1016/S1164-5563(00)01056-6
- Niu B, Vater J, Rueckert C, Blom J, Lehmann M, Ru J-J, et al. 2013. Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiol. 13: 137.
- Sheela T. 2013. Influence of Plant Growth Promoting Rhizobacteria (PGPR) on thegrowth of maize (Zea mays L.). Gol. Res. Thoughts 3. No.6 pp.GRT-3093 ref.21.
- Furnkranz M, Adam E, Muller H, Grube M, Huss H, Winkler J, et al. 2012. Promotion of growth, health and stress tolerance of Styrian oil pumpkins by bacterial endophytes. Eur. J. Plant Pathol. 134: 509-519. https://doi.org/10.1007/s10658-012-0033-2
- Weselowski B, Nathoo N, Eastman AW, MacDonald J, Yuan ZC. 2016. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiol. 16: 244.
- Zhou Y, Gao S, Wei DQ, Yang LL, Huang X, He J, et al. 2012. Paenibacillus thermophilus sp. nov., a novel bacterium isolated from a sediment of hot spring in Fujian province, China. Antonie Van Leeuwenhoek 102: 601-609. https://doi.org/10.1007/s10482-012-9755-6
- Yao R, Wang R, Wang D, Su J, Zheng S, Wang G. 2014. Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int. J. Syst. Evol. Microbiol. 64: 805-811. https://doi.org/10.1099/ijs.0.057042-0
- Hall TA. 1999. Presented at the Nucleic acids symposium series.
- Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680. https://doi.org/10.1093/nar/22.22.4673
- Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
- Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376. https://doi.org/10.1007/BF01734359
- Rzhetsky A, Nei M. 1992. A simple method for estimating and testing minimum-evolution trees. Mol. Biol. Evol. 9: 945-967.
- Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120. https://doi.org/10.1007/BF01731581
- Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
- Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791. https://doi.org/10.2307/2408678
- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410. https://doi.org/10.1016/S0022-2836(05)80360-2
- Yoon SH, Ha SM, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110: 1281-1286. https://doi.org/10.1007/s10482-017-0844-4
- Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60.
- Lee I, Ouk Kim Y, Park SC, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103. https://doi.org/10.1099/ijsem.0.000760
- Meier-Kolthoff JP, Goker M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10: 2182.
- Lefort V, Desper R, Gascuel O. 2015. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32: 2798-2800. https://doi.org/10.1093/molbev/msv150
- Graham ED, Heidelberg JF, Tully BJ. 2018. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 12: 1861-1866. https://doi.org/10.1038/s41396-018-0091-3
- Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42: D206-D214. https://doi.org/10.1093/nar/gkt1226
- Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, et al. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49: W29-W35. https://doi.org/10.1093/nar/gkab335
- Skinnider MA, Merwin NJ, Johnston CW, Magarvey NA. 2017. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res. 45: W49-W54. https://doi.org/10.1093/nar/gkx320
- van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP. 2018. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 46: W278-W281. https://doi.org/10.1093/nar/gky383
- Pineiro-Vidal M, Pazos F, Santos Y. 2008. Fatty acid analysis as a chemotaxonomic tool for taxonomic and epidemiological characterization of four fish pathogenic Tenacibaculum species. Lett. Appl. Microbiol. 46: 548-554. https://doi.org/10.1111/j.1472-765X.2008.02348.x
- Sasser, Myron. 1990 Identification of bacteria by gas chromatogtaphy of cellular fatty acids. MIDI technical note 101. Newark, DE; MIDI inc.
- Kim M, Oh H-S, Park S-C, Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64: 346-351. https://doi.org/10.1099/ijs.0.059774-0
- Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K, Turner S, et al. 2018. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int. J. Syst. Evol. Microbiol. 68: 2386.
- Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9: 5114.
- Konstantinidis KT, Tiedje JM. 2007. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr. Opin. Microbiol. 10: 504-509. https://doi.org/10.1016/j.mib.2007.08.006
- Luo C, Rodriguez RL, Konstantinidis KT. 2014. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res. 42: e73.
- Reilly PJ. 1999. Protein engineering of glucoamylase to improve industrial performance - a review. Starch-Starke. 51: 269-274. https://doi.org/10.1002/(SICI)1521-379X(199909)51:8/9<269::AID-STAR269>3.0.CO;2-3
- Ford C. 1999. Improving operating performance of glucoamylase by mutagenesis. Curr. Opin. Biotechnol. 10: 353-357. https://doi.org/10.1016/S0958-1669(99)80064-0