DOI QR코드

DOI QR Code

Isolation, Characterization and Whole-Genome Analysis of Paenibacillus andongensis sp.nov. from Korean Soil

  • Yong Guan (Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology) ;
  • Zhun Li (Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology) ;
  • Yoon-Ho Kang (Water Environment Research Department, National Institute of Environmental Research) ;
  • Mi-Kyung Lee (Biological Resource Center, Korean Collection for Type Cultures (KCTC), Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2022.11.17
  • Accepted : 2023.02.15
  • Published : 2023.06.28

Abstract

The genus Paenibacillus contains a variety of biologically active compounds that have potential applications in a range of fields, including medicine, agriculture, and livestock, playing an important role in the health and economy of society. Our study focused on the bacterium SS4T (KCTC 43402T = GDMCC 1.3498T), which was characterized using a polyphasic taxonomic approach. This strain was analyzed using antiSMASH, BAGEL4, and PRISM to predict the secondary metabolites. Lassopeptide clusters were found using all three analysis methods, with the possibility of secretion. Additionally, PRISM found three biosynthetic gene clusters (BGC) and predicted the structure of the product. Genome analysis indicated that glucoamylase is present in SS4T. 16S rRNA sequence analysis showed that strain SS4T most closely resembled Paenibacillus marchantiophytorum DSM 29850T (98.22%), Paenibacillus nebraskensis JJ-59T (98.19%), and Paenibacillus aceris KCTC 13870T (98.08%). Analysis of the 16S rRNA gene sequences and Type Strain Genome Server (TYGS) analysis revealed that SS4T belongs to the genus Paenibacillus based on the results of the phylogenetic analysis. As a result of the matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF/MS) results, SS4T was determined to belong to the genus Paenibacillus. Comparing P. marchantiophytorum DSM 29850T with average nucleotide identity (ANI 78.97%) and digital DNA-DNA hybridization (dDDH 23%) revealed values that were all less than the threshold for bacterial species differentiation. The results of this study suggest that strain SS4T can be classified as a Paenibacillus andongensis species and is a novel member of the genus Paenibacillus.

Keywords

Acknowledgement

The work was supported by the National Institute of Agricultural Sciences (PJ015298), the Korea Institute of Biosciences and Biotechnology (KRIBB) research initiative program (KGM 5232322) and the National Research Foundation of Korea (NRF) Grant funded of the Korea government (MSIT) (No. NRF-2020R1A2C2012111) to M.-K. L., and was also supported by a grant from the National Institute of Environment Research (NIER), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIER-2021-01-01-044) to Y.-H. K.

References

  1. Ash C FJ, Wallbanks S, Collins MD. 1991. Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett. Appl. Microbiol. 13: 202-206.  https://doi.org/10.1111/j.1472-765X.1991.tb00608.x
  2. Shida O, Takagi H, Kadowaki K, Nakamura LK, Komagata K. 1997. Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int. J. Syst. Bacteriol. 47: 289-298.  https://doi.org/10.1099/00207713-47-2-289
  3. Behrendt U, Schumann P, Stieglmeier M, Pukall R, Augustin J, Sproer C, et al. 2010. Characterization of heterotrophic nitrifying bacteria with respiratory ammonification and denitrification activity--description of Paenibacillus uliginis sp. nov., an inhabitant of fen peat soil and Paenibacillus purispatii sp. nov., isolated from a spacecraft assembly clean room. Syst. Appl. Microbiol. 33: 328-336.  https://doi.org/10.1016/j.syapm.2010.07.004
  4. Lal S, Tabacchioni S. 2009. Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J. Microbiol. 49: 2-10.  https://doi.org/10.1007/s12088-009-0008-y
  5. Shishido M, Massicotte, H. B., and Chanway, C. P. 1996. Effect of plant growth promoting Bacillus strains on pine and spruce seedling growth and mycorrhizal infection. Ann. Bot. 77: 433-442.  https://doi.org/10.1006/anbo.1996.0053
  6. Guemouri-Athmani S, Berge O, Bourrain M, Mavingui P, Thiery JM, Bhatnagar T, et al. 2000. Diversity of Paenibacillus polymyxa populations in the rhizosphereof wheat (Triticum durum) in Algerian soils. Eur. J. Soil Biol. 36: 149-159.  https://doi.org/10.1016/S1164-5563(00)01056-6
  7. Niu B, Vater J, Rueckert C, Blom J, Lehmann M, Ru J-J, et al. 2013. Polymyxin P is the active principle in suppressing phytopathogenic Erwinia spp. by the biocontrol rhizobacterium Paenibacillus polymyxa M-1. BMC Microbiol. 13: 137. 
  8. Sheela T. 2013. Influence of Plant Growth Promoting Rhizobacteria (PGPR) on thegrowth of maize (Zea mays L.). Gol. Res. Thoughts 3. No.6 pp.GRT-3093 ref.21. 
  9. Furnkranz M, Adam E, Muller H, Grube M, Huss H, Winkler J, et al. 2012. Promotion of growth, health and stress tolerance of Styrian oil pumpkins by bacterial endophytes. Eur. J. Plant Pathol. 134: 509-519.  https://doi.org/10.1007/s10658-012-0033-2
  10. Weselowski B, Nathoo N, Eastman AW, MacDonald J, Yuan ZC. 2016. Isolation, identification and characterization of Paenibacillus polymyxa CR1 with potentials for biopesticide, biofertilization, biomass degradation and biofuel production. BMC Microbiol. 16: 244. 
  11. Zhou Y, Gao S, Wei DQ, Yang LL, Huang X, He J, et al. 2012. Paenibacillus thermophilus sp. nov., a novel bacterium isolated from a sediment of hot spring in Fujian province, China. Antonie Van Leeuwenhoek 102: 601-609.  https://doi.org/10.1007/s10482-012-9755-6
  12. Yao R, Wang R, Wang D, Su J, Zheng S, Wang G. 2014. Paenibacillus selenitireducens sp. nov., a selenite-reducing bacterium isolated from a selenium mineral soil. Int. J. Syst. Evol. Microbiol. 64: 805-811.  https://doi.org/10.1099/ijs.0.057042-0
  13. Hall TA. 1999. Presented at the Nucleic acids symposium series. 
  14. Thompson JD, Higgins DG, Gibson TJ. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680.  https://doi.org/10.1093/nar/22.22.4673
  15. Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425. 
  16. Felsenstein J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17: 368-376.  https://doi.org/10.1007/BF01734359
  17. Rzhetsky A, Nei M. 1992. A simple method for estimating and testing minimum-evolution trees. Mol. Biol. Evol. 9: 945-967. 
  18. Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.  https://doi.org/10.1007/BF01731581
  19. Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874.  https://doi.org/10.1093/molbev/msw054
  20. Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.  https://doi.org/10.2307/2408678
  21. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403-410.  https://doi.org/10.1016/S0022-2836(05)80360-2
  22. Yoon SH, Ha SM, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110: 1281-1286.  https://doi.org/10.1007/s10482-017-0844-4
  23. Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60. 
  24. Lee I, Ouk Kim Y, Park SC, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103.  https://doi.org/10.1099/ijsem.0.000760
  25. Meier-Kolthoff JP, Goker M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10: 2182. 
  26. Lefort V, Desper R, Gascuel O. 2015. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol. 32: 2798-2800.  https://doi.org/10.1093/molbev/msv150
  27. Graham ED, Heidelberg JF, Tully BJ. 2018. Potential for primary productivity in a globally-distributed bacterial phototroph. ISME J. 12: 1861-1866.  https://doi.org/10.1038/s41396-018-0091-3
  28. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42: D206-D214.  https://doi.org/10.1093/nar/gkt1226
  29. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, et al. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49: W29-W35.  https://doi.org/10.1093/nar/gkab335
  30. Skinnider MA, Merwin NJ, Johnston CW, Magarvey NA. 2017. PRISM 3: expanded prediction of natural product chemical structures from microbial genomes. Nucleic Acids Res. 45: W49-W54.  https://doi.org/10.1093/nar/gkx320
  31. van Heel AJ, de Jong A, Song C, Viel JH, Kok J, Kuipers OP. 2018. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 46: W278-W281.  https://doi.org/10.1093/nar/gky383
  32. Pineiro-Vidal M, Pazos F, Santos Y. 2008. Fatty acid analysis as a chemotaxonomic tool for taxonomic and epidemiological characterization of four fish pathogenic Tenacibaculum species. Lett. Appl. Microbiol. 46: 548-554.  https://doi.org/10.1111/j.1472-765X.2008.02348.x
  33. Sasser, Myron. 1990 Identification of bacteria by gas chromatogtaphy of cellular fatty acids. MIDI technical note 101. Newark, DE; MIDI inc. 
  34. Kim M, Oh H-S, Park S-C, Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64: 346-351.  https://doi.org/10.1099/ijs.0.059774-0
  35. Ciufo S, Kannan S, Sharma S, Badretdin A, Clark K, Turner S, et al. 2018. Using average nucleotide identity to improve taxonomic assignments in prokaryotic genomes at the NCBI. Int. J. Syst. Evol. Microbiol. 68: 2386. 
  36. Jain C, Rodriguez RL, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9: 5114. 
  37. Konstantinidis KT, Tiedje JM. 2007. Prokaryotic taxonomy and phylogeny in the genomic era: advancements and challenges ahead. Curr. Opin. Microbiol. 10: 504-509.  https://doi.org/10.1016/j.mib.2007.08.006
  38. Luo C, Rodriguez RL, Konstantinidis KT. 2014. MyTaxa: an advanced taxonomic classifier for genomic and metagenomic sequences. Nucleic Acids Res. 42: e73. 
  39. Reilly PJ. 1999. Protein engineering of glucoamylase to improve industrial performance - a review. Starch-Starke. 51: 269-274.  https://doi.org/10.1002/(SICI)1521-379X(199909)51:8/9<269::AID-STAR269>3.0.CO;2-3
  40. Ford C. 1999. Improving operating performance of glucoamylase by mutagenesis. Curr. Opin. Biotechnol. 10: 353-357.  https://doi.org/10.1016/S0958-1669(99)80064-0