References
- Polyxeni Nicolopoulou-Stamati, Sotirios Maipas, Chrysanthi Kotampasi, Panagiotis Stamatis. 2016. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 4: 148.
- Islam MM, Kadiyala V, Dharmarajan R, Annamalai P, Mallavarapu M. 2020. Pesticides in the urban environment: a potential threat that knocks at the door. Sci. Total. Environ. 711: 134612.
- Huang Y, Xiao L, Li F, Xiao M, Lin D, Long X, et al. 2018. Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: a review. Molecules 23: 2313.
- Raffa CM, Chiampo F. 2021. Bioremediation of agricultural soils polluted with pesticides: a review. Bioengineering 8: 92.
- Hemingway, Janet, Ranson, Hilary. 2000. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45: 371-91. https://doi.org/10.1146/annurev.ento.45.1.371
- Padoley KV, Mudliar SN, Pandey RA. 2008. Heterocyclic nitrogenous pollutants in the environment and their treatment options - an overview. Bioresour. Technol. 99: 4029-4043. https://doi.org/10.1016/j.biortech.2007.01.047
- Igor A Parshikov, Alexander I Netrusov, John B Sutherland. 2012. Microbial transformation of azaarenes and potential uses in pharmaceutical synthesis. 95: 871-89. https://doi.org/10.1007/s00253-012-4220-z
- Lim SJ, Fox P. 2014. Effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds using a modified QSAR model. Sci. Total Environ. 470-471: 348-355. https://doi.org/10.1016/j.scitotenv.2013.09.089
- Jain M, Yadav P, Joshi A, Kodgire P. 2019. Advances in detection of hazardous organophosphorus compounds using organophosphorus hydrolase based biosensors. Crit. Rev. Toxicol. 49: 387-410. https://doi.org/10.1080/10408444.2019.1626800
- Konstantinos F, Gillman I, Matt M, Amelia P, Wendy G, Kathy H, et al. 2015. Nicotine levels and presence of selected tobacco-derived toxins in tobacco flavoured electronic cigarette refill liquids. Int. J. Public Health 12: 3439-3452. https://doi.org/10.3390/ijerph120403439
- Evdokia, Menelaou, Ava J, Udvadia, Robert, et al. 2014. Activation of α2A-containing nicotinic acetylcholine receptors mediates nicotine-induced motor output in embryonic zebrafish. Eur. J. Neurosci. 40: 2225-2240. https://doi.org/10.1111/ejn.12591
- Mei Chen, Erin M Collins, Lin Tao, Chensheng Lu. 2013. Simultaneous determination of residues in pollen and high-fructose corn syrup from eight neonicotinoid insecticides by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 405: 9251-9264. https://doi.org/10.1007/s00216-013-7338-7
- Nadeem Muhammad, FenglianWang, Qamar Subhani, Qiming Zhao, Abdul qadir M, Hairong Cui, et al. 2018. Comprehensive two-dimensional ion chromatography (2D-IC) coupled to a post-column photochemical fluorescence detection system for determination of neonicotinoids (imidacloprid and clothianidin) in food samples. RSC Adv. 8: 9277-9286. https://doi.org/10.1039/C7RA12555K
- Burris E, Sanders JK, Williams KE. 2000. EVALUATION OF ACETAMIPRID FOR CONTROL OF APHIDS IN COTTON, 1999. Arth Manage Tests 25: F78-F78. https://doi.org/10.1093/amt/25.1.F78
- Lisicki D, Nowak K, Orlinska B. 2022. Methods to produce nicotinic acid with potential industrial applications. Materials (Basel) 15: 765.
- Nakamoto KD, Perkins SW, Campbell RG, Bauerle MR, Gerwig TJ, Gerislioglu S, et al. 2019. Mechanism of 6-hydroxynicotinate 3-monooxygenase, a flavin-dependent decarboxylative hydroxylase involved in bacterial nicotinic acid degradation. Biochemistry 58: 1751-1763. https://doi.org/10.1021/acs.biochem.8b00969
- van Stipdonk MJ, Kullman MJ, Berden G, Oomens J. 2014. Infrared multiple-photon dissociation spectroscopy of deprotonated 6-hydroxynicotinic acid. Rapid Commun. Mass Spectrom. 28: 691-698. https://doi.org/10.1002/rcm.6829
- Adams R. 1956. 6-HYDROXYNICOTINIC ACID. Org Synth. 36.
- Allinson M. 1943. A specific enzymatic method for the determination of nicotinic acid in blood. J. Biol. Chem. 147: 785-791. https://doi.org/10.1016/S0021-9258(18)72377-6
- Kaiser JP, Feng YC, Bollag JM. 1996. Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. Microbiol. Rev. 60: 483-498. https://doi.org/10.1128/mr.60.3.483-498.1996
- Horinouchi M, Kurita T, Hayashi T, Kudo T. 2010. Steroid degradation genes in Comamonas testosteroni TA441: isolation of genes encoding a delta 4(5)-isomerase and 3 alpha- and 3 beta-dehydrogenases and evidence for a 100 kb steroid degradation gene hot spot. J. Steroid Biochem. Mol. Biol. 122: 253-263. https://doi.org/10.1016/j.jsbmb.2010.06.002
- Nagel M, Andreesen JR. 1989. Molybdenum-dependent degradation of nicotinic acid by Bacillus sp. DSM 2923. FEMS Microbiol. Lett. 59: 147-151. https://doi.org/10.1111/j.1574-6968.1989.tb03099.x
- Ensign JC, Rittenberg SC. 1964. The pathway of nicotinic acid oxidation by a Bacillus species. J. Biol. Chem. 239: 2285-2291. https://doi.org/10.1016/S0021-9258(20)82232-7
- Hurh B, Yamane T, Nagasawa T. 1994. Purification and characterization of nicotinic acid dehydrogenase from Pseudomonas fluorescens TN5. J. Ferment. Bioeng. 78: 19-26. https://doi.org/10.1016/0922-338X(94)90172-4
- Behrman EJ, Stanier RY. 1957. Observations on the oxidation of halogenated nicotinic acids. J. Biol. Chem. 228: 947-953. https://doi.org/10.1016/S0021-9258(18)70672-8
- Hunt AL. 1959. Purification of the nicotinic acid hydroxylase system of Pseudomonas fluorescens Kb1. Biochem. J. 72: 1-7. https://doi.org/10.1042/bj0720001
- Alhapel A, Darley DJ, Wagener N, Eckel E, Elsner N, Pierik AJ. 2006. Molecular and functional analysis of nicotinate catabolism in Eubacterium barkeri. Proc. Natl Acad. Sci. USA 103: 12341-12346. https://doi.org/10.1073/pnas.0601635103
- Dilworth GL. 1982. Properties of the selenium-containing moiety of nicotinic-acid hydroxylase from Clostridium-Barkeri. Arch. Biochem. Biophys. 219: 30-38. https://doi.org/10.1016/0003-9861(82)90130-8
- Yao Y, Yuan S, Chen T, Ma P, Shang G, Dai Y. 2009. Cloning, heterologous expression, and functional characterization of the nicotinate dehydrogenase gene from Pseudomonas putida KT2440. Biodegradation 20: 541-549. https://doi.org/10.1007/s10532-008-9243-x
- Holcenberg JS, Stadtman ER. 1969. Nicotinic acid metabolism. III. Purification and properties of a nicotinic acid hydrolase. J. Biol. Chem. 244: 1194-1203. https://doi.org/10.1016/S0021-9258(18)91829-6
- Weerth RS, Medlock AE, Dailey HA. 2021. Ironing out the distribution of [2Fe-2S] motifs in ferrochelatases. J. Biol. Chem. 297: 101017.
- Iamurri SM, Daugherty AB, Edmondson DE, Lutz S. 2013. Truncated FAD synthetase for direct biocatalytic conversion of riboflavin and analogs to their corresponding flavin mononucleotides. Protein Eng. Des. Sel. 26: 791-795. https://doi.org/10.1093/protein/gzt055
- Andreesen JR, Fetzner S. 2002. The molybdenum-containing hydroxylases of nicotinate, isonicotinate, and nicotine. Met. Ions Biol. Syst. 39: 405-430. https://doi.org/10.1201/9780203909331.ch11
- Lemberg R. 1961. Cytochromes of group-a and their prosthetic groups. Adv. Enzymol. Rel. S Biol. 23: 265-321. https://doi.org/10.1002/9780470122686.ch6
- Yuan S, Yang Y, Sun J, Liang MX, Xu SC. 2005. A combined hydroxylation of 3-Cyanopyridine to 3-Cyano-6-hydroxypyridine and 6-hydroxynicotinic acid by resting cells of Comamonas testosteroni JA1 grown on nicotinic acid. Eng. Life Sci. 5: 369-374. https://doi.org/10.1002/elsc.200520063
- Lu WH, Wang X, Xu L, Dai YJ, Yuan S. 2005. Induction of nicotinic acid hydroxylase activity of Pseudomonas putida NA-1 and optimization of transformation conditions. Acta Microbiol. Sin. 45: 551-555.
- Hurh B, Ohshima M, Yamane T, Nagasawa T. 1994. Microbial-production of 6-hydroxynicotinic acid, an important building, block for the synthesis of modern insecticides. J. Ferment. Bioeng. 77: 382-385. https://doi.org/10.1016/0922-338X(94)90008-6
- Yao Y. 2008. The Hydroxylation of Pyridine-related Compounds and the Relative Hydroxylase, Cloning and Functionial Expression. Nanjing Normal University.
- Yasuda M, Sakamoto T, Sashida R, Ueda M, Morimoto Y, Nagasawa T. 1995. Microbial hydroxyIation of 3-Cyanopyridine to 3-Cyano-6-hydroxypyridine. Biosci. Biotechnol. Biochm. 59: 572-575. https://doi.org/10.1271/bbb.59.572
- Wang HM, Jian LI, Jiu-Gan GE, Wu QI, Zhou JH, Xue Y. 2012. Synthesis of 2-chloro-5-methylpyridine by 3-methylpyridine. World Pestic. 6: 26-27,32.
- KV Padoley, SN Mudliar, RA Pandey. 2008. Heterocyclic nitrogenous pollutants in the environment and their treatment options - an overview. Bioresour. Technol. 99: 4029-4043. https://doi.org/10.1016/j.biortech.2007.01.047
- Johansen SS, Licht D, Arvin E, Mosbaek H, Hansen AB. 1997. Metabolic pathways of quinoline, indole and their methylated analogs by Desulfobacterium indolicum (DSM 3383). Appl. Microbiol. Biotechnol. 47: 292-300. https://doi.org/10.1007/s002530050929
- Harary I. 1956. Bacterial degradation of nicotinic acid. Nature 177: 328-329. https://doi.org/10.1038/177328a0
- Shang YT, Qin J, Gong JS, Wang ZK, Xu ZH. 2021. High-throughput screening of a nicotinate dehydrogenase producing Pseudomonas putida mutant for efficient biosynthesis of 6-hydroxynicotinic acid. Mol. Catal. 509: 111600.
- Guozhong C, Qiucui G, Qixiu T, Shuojun W, Lianqiang L, Zhibin F. 2017. Isolation, identification and culture optimization of Pseudomonas putida H9, a marine bacterium producing nicotinic acid hydroxylase. Food Sci. 38: 130-136.
- Luo H, Chun-Miao JI, Chang YH, Zhou BH. 2010. Rapid screening of a nicotine acid hydroxylase producing strain and its catalytic conditions. Chin. J. Process Eng. 10: 576-581.
- Luo H, Yin Z, Chang Y, Xiao B. 2007. Cultivation and biotransformation of Pseudomonas sp. BK-1. Chin. J. Eng. 29: 216-220.