DOI QR코드

DOI QR Code

Sources, Components, Structure, Catalytic Mechanism and Applications: a Critical Review on Nicotinate Dehydrogenase

  • Zhi Chen (School of Chemistry and Life Science, Suzhou University of Science and Technology) ;
  • Xiangjing Xu (School of Chemistry and Life Science, Suzhou University of Science and Technology) ;
  • Xin Ju (School of Chemistry and Life Science, Suzhou University of Science and Technology) ;
  • Lishi Yan (School of Chemistry and Life Science, Suzhou University of Science and Technology) ;
  • Liangzhi Li (School of Chemistry and Life Science, Suzhou University of Science and Technology) ;
  • Lin Yang (College of Life Sciences, Jiangxi Normal University)
  • Received : 2023.02.07
  • Accepted : 2023.02.21
  • Published : 2023.06.28

Abstract

Plant-derived insecticide-neonicotinoid insecticides (NIs) played a crucial role in the development of agriculture and food industry in recent years. Nevertheless, synthesis of these nitrogen-containing heterocyclic compounds with an effective and greener routing remains challenging especially to the notion raise of "green chemistry" and "atom economy". While bio-catalyzed methods mediated by nicotinate dehydrogenase (NDHase) then provide an alternative. The current review mainly focuses on the introduction of sources, components, structure, catalytic mechanism and applications of NDHase. Specifically, NDHase is known as nicotinic acid hydroxylase and the sources principally derived from phylum Proteobacteria. In addition, NDHase requires the participation of the electron respiratory chain system on the cell membrane. And the most important components of the electron respiratory chain are hydrogen carrier, which is mainly composed of iron-sulfur proteins (Fe-S), flavin dehydrogenase (FAD), molybdenum binding protein and cytochromes. Heterologous expression studies were hampered by the plasmid and host with high efficiency and currently only Pseudomonas entomophila L48 as well as Comamonas testosterone was successfully utilized for the expression of NDHase. Furthermore, it is speculated that the conjugate and inductive effects of the substituent group at position 3 of the substrate pyridine ring exerts a critical role in the hydroxylation reactions at position 6 concerning about the substrate molecular recognition mechanism. Finally, applications of NDHase are addressed in terms of pesticide industry and wastewater treatment. On conclusion, this critical review would not only deepen our understanding of the theory about NDHase, but also provides the guideline for future investigation of NDHase.

Keywords

References

  1. Polyxeni Nicolopoulou-Stamati, Sotirios Maipas, Chrysanthi Kotampasi, Panagiotis Stamatis. 2016. Chemical pesticides and human health: The urgent need for a new concept in agriculture. Front. Public Health 4: 148. 
  2. Islam MM, Kadiyala V, Dharmarajan R, Annamalai P, Mallavarapu M. 2020. Pesticides in the urban environment: a potential threat that knocks at the door. Sci. Total. Environ. 711: 134612. 
  3. Huang Y, Xiao L, Li F, Xiao M, Lin D, Long X, et al. 2018. Microbial degradation of pesticide residues and an emphasis on the degradation of cypermethrin and 3-phenoxy benzoic acid: a review. Molecules 23: 2313. 
  4. Raffa CM, Chiampo F. 2021. Bioremediation of agricultural soils polluted with pesticides: a review. Bioengineering 8: 92. 
  5. Hemingway, Janet, Ranson, Hilary. 2000. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45: 371-91.  https://doi.org/10.1146/annurev.ento.45.1.371
  6. Padoley KV, Mudliar SN, Pandey RA. 2008. Heterocyclic nitrogenous pollutants in the environment and their treatment options - an overview. Bioresour. Technol. 99: 4029-4043.  https://doi.org/10.1016/j.biortech.2007.01.047
  7. Igor A Parshikov, Alexander I Netrusov, John B Sutherland. 2012. Microbial transformation of azaarenes and potential uses in pharmaceutical synthesis. 95: 871-89.  https://doi.org/10.1007/s00253-012-4220-z
  8. Lim SJ, Fox P. 2014. Effects of halogenated aromatics/aliphatics and nitrogen(N)-heterocyclic aromatics on estimating the persistence of future pharmaceutical compounds using a modified QSAR model. Sci. Total Environ. 470-471: 348-355.  https://doi.org/10.1016/j.scitotenv.2013.09.089
  9. Jain M, Yadav P, Joshi A, Kodgire P. 2019. Advances in detection of hazardous organophosphorus compounds using organophosphorus hydrolase based biosensors. Crit. Rev. Toxicol. 49: 387-410.  https://doi.org/10.1080/10408444.2019.1626800
  10. Konstantinos F, Gillman I, Matt M, Amelia P, Wendy G, Kathy H, et al. 2015. Nicotine levels and presence of selected tobacco-derived toxins in tobacco flavoured electronic cigarette refill liquids. Int. J. Public Health 12: 3439-3452.  https://doi.org/10.3390/ijerph120403439
  11. Evdokia, Menelaou, Ava J, Udvadia, Robert, et al. 2014. Activation of α2A-containing nicotinic acetylcholine receptors mediates nicotine-induced motor output in embryonic zebrafish. Eur. J. Neurosci. 40: 2225-2240.  https://doi.org/10.1111/ejn.12591
  12. Mei Chen, Erin M Collins, Lin Tao, Chensheng Lu. 2013. Simultaneous determination of residues in pollen and high-fructose corn syrup from eight neonicotinoid insecticides by liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 405: 9251-9264.  https://doi.org/10.1007/s00216-013-7338-7
  13. Nadeem Muhammad, FenglianWang, Qamar Subhani, Qiming Zhao, Abdul qadir M, Hairong Cui, et al. 2018. Comprehensive two-dimensional ion chromatography (2D-IC) coupled to a post-column photochemical fluorescence detection system for determination of neonicotinoids (imidacloprid and clothianidin) in food samples. RSC Adv. 8: 9277-9286.  https://doi.org/10.1039/C7RA12555K
  14. Burris E, Sanders JK, Williams KE. 2000. EVALUATION OF ACETAMIPRID FOR CONTROL OF APHIDS IN COTTON, 1999. Arth Manage Tests 25: F78-F78.  https://doi.org/10.1093/amt/25.1.F78
  15. Lisicki D, Nowak K, Orlinska B. 2022. Methods to produce nicotinic acid with potential industrial applications. Materials (Basel) 15: 765. 
  16. Nakamoto KD, Perkins SW, Campbell RG, Bauerle MR, Gerwig TJ, Gerislioglu S, et al. 2019. Mechanism of 6-hydroxynicotinate 3-monooxygenase, a flavin-dependent decarboxylative hydroxylase involved in bacterial nicotinic acid degradation. Biochemistry 58: 1751-1763.  https://doi.org/10.1021/acs.biochem.8b00969
  17. van Stipdonk MJ, Kullman MJ, Berden G, Oomens J. 2014. Infrared multiple-photon dissociation spectroscopy of deprotonated 6-hydroxynicotinic acid. Rapid Commun. Mass Spectrom. 28: 691-698.  https://doi.org/10.1002/rcm.6829
  18. Adams R. 1956. 6-HYDROXYNICOTINIC ACID. Org Synth. 36. 
  19. Allinson M. 1943. A specific enzymatic method for the determination of nicotinic acid in blood. J. Biol. Chem. 147: 785-791.  https://doi.org/10.1016/S0021-9258(18)72377-6
  20. Kaiser JP, Feng YC, Bollag JM. 1996. Microbial metabolism of pyridine, quinoline, acridine, and their derivatives under aerobic and anaerobic conditions. Microbiol. Rev. 60: 483-498.  https://doi.org/10.1128/mr.60.3.483-498.1996
  21. Horinouchi M, Kurita T, Hayashi T, Kudo T. 2010. Steroid degradation genes in Comamonas testosteroni TA441: isolation of genes encoding a delta 4(5)-isomerase and 3 alpha- and 3 beta-dehydrogenases and evidence for a 100 kb steroid degradation gene hot spot. J. Steroid Biochem. Mol. Biol. 122: 253-263.  https://doi.org/10.1016/j.jsbmb.2010.06.002
  22. Nagel M, Andreesen JR. 1989. Molybdenum-dependent degradation of nicotinic acid by Bacillus sp. DSM 2923. FEMS Microbiol. Lett. 59: 147-151.  https://doi.org/10.1111/j.1574-6968.1989.tb03099.x
  23. Ensign JC, Rittenberg SC. 1964. The pathway of nicotinic acid oxidation by a Bacillus species. J. Biol. Chem. 239: 2285-2291.  https://doi.org/10.1016/S0021-9258(20)82232-7
  24. Hurh B, Yamane T, Nagasawa T. 1994. Purification and characterization of nicotinic acid dehydrogenase from Pseudomonas fluorescens TN5. J. Ferment. Bioeng. 78: 19-26.  https://doi.org/10.1016/0922-338X(94)90172-4
  25. Behrman EJ, Stanier RY. 1957. Observations on the oxidation of halogenated nicotinic acids. J. Biol. Chem. 228: 947-953.  https://doi.org/10.1016/S0021-9258(18)70672-8
  26. Hunt AL. 1959. Purification of the nicotinic acid hydroxylase system of Pseudomonas fluorescens Kb1. Biochem. J. 72: 1-7.  https://doi.org/10.1042/bj0720001
  27. Alhapel A, Darley DJ, Wagener N, Eckel E, Elsner N, Pierik AJ. 2006. Molecular and functional analysis of nicotinate catabolism in Eubacterium barkeri. Proc. Natl Acad. Sci. USA 103: 12341-12346.  https://doi.org/10.1073/pnas.0601635103
  28. Dilworth GL. 1982. Properties of the selenium-containing moiety of nicotinic-acid hydroxylase from Clostridium-Barkeri. Arch. Biochem. Biophys. 219: 30-38.  https://doi.org/10.1016/0003-9861(82)90130-8
  29. Yao Y, Yuan S, Chen T, Ma P, Shang G, Dai Y. 2009. Cloning, heterologous expression, and functional characterization of the nicotinate dehydrogenase gene from Pseudomonas putida KT2440. Biodegradation 20: 541-549.  https://doi.org/10.1007/s10532-008-9243-x
  30. Holcenberg JS, Stadtman ER. 1969. Nicotinic acid metabolism. III. Purification and properties of a nicotinic acid hydrolase. J. Biol. Chem. 244: 1194-1203.  https://doi.org/10.1016/S0021-9258(18)91829-6
  31. Weerth RS, Medlock AE, Dailey HA. 2021. Ironing out the distribution of [2Fe-2S] motifs in ferrochelatases. J. Biol. Chem. 297: 101017. 
  32. Iamurri SM, Daugherty AB, Edmondson DE, Lutz S. 2013. Truncated FAD synthetase for direct biocatalytic conversion of riboflavin and analogs to their corresponding flavin mononucleotides. Protein Eng. Des. Sel. 26: 791-795.  https://doi.org/10.1093/protein/gzt055
  33. Andreesen JR, Fetzner S. 2002. The molybdenum-containing hydroxylases of nicotinate, isonicotinate, and nicotine. Met. Ions Biol. Syst. 39: 405-430.  https://doi.org/10.1201/9780203909331.ch11
  34. Lemberg R. 1961. Cytochromes of group-a and their prosthetic groups. Adv. Enzymol. Rel. S Biol. 23: 265-321.  https://doi.org/10.1002/9780470122686.ch6
  35. Yuan S, Yang Y, Sun J, Liang MX, Xu SC. 2005. A combined hydroxylation of 3-Cyanopyridine to 3-Cyano-6-hydroxypyridine and 6-hydroxynicotinic acid by resting cells of Comamonas testosteroni JA1 grown on nicotinic acid. Eng. Life Sci. 5: 369-374.  https://doi.org/10.1002/elsc.200520063
  36. Lu WH, Wang X, Xu L, Dai YJ, Yuan S. 2005. Induction of nicotinic acid hydroxylase activity of Pseudomonas putida NA-1 and optimization of transformation conditions. Acta Microbiol. Sin. 45: 551-555. 
  37. Hurh B, Ohshima M, Yamane T, Nagasawa T. 1994. Microbial-production of 6-hydroxynicotinic acid, an important building, block for the synthesis of modern insecticides. J. Ferment. Bioeng. 77: 382-385.  https://doi.org/10.1016/0922-338X(94)90008-6
  38. Yao Y. 2008. The Hydroxylation of Pyridine-related Compounds and the Relative Hydroxylase, Cloning and Functionial Expression. Nanjing Normal University. 
  39. Yasuda M, Sakamoto T, Sashida R, Ueda M, Morimoto Y, Nagasawa T. 1995. Microbial hydroxyIation of 3-Cyanopyridine to 3-Cyano-6-hydroxypyridine. Biosci. Biotechnol. Biochm. 59: 572-575.  https://doi.org/10.1271/bbb.59.572
  40. Wang HM, Jian LI, Jiu-Gan GE, Wu QI, Zhou JH, Xue Y. 2012. Synthesis of 2-chloro-5-methylpyridine by 3-methylpyridine. World Pestic. 6: 26-27,32. 
  41. KV Padoley, SN Mudliar, RA Pandey. 2008. Heterocyclic nitrogenous pollutants in the environment and their treatment options - an overview. Bioresour. Technol. 99: 4029-4043.  https://doi.org/10.1016/j.biortech.2007.01.047
  42. Johansen SS, Licht D, Arvin E, Mosbaek H, Hansen AB. 1997. Metabolic pathways of quinoline, indole and their methylated analogs by Desulfobacterium indolicum (DSM 3383). Appl. Microbiol. Biotechnol. 47: 292-300.  https://doi.org/10.1007/s002530050929
  43. Harary I. 1956. Bacterial degradation of nicotinic acid. Nature 177: 328-329.  https://doi.org/10.1038/177328a0
  44. Shang YT, Qin J, Gong JS, Wang ZK, Xu ZH. 2021. High-throughput screening of a nicotinate dehydrogenase producing Pseudomonas putida mutant for efficient biosynthesis of 6-hydroxynicotinic acid. Mol. Catal. 509: 111600. 
  45. Guozhong C, Qiucui G, Qixiu T, Shuojun W, Lianqiang L, Zhibin F. 2017. Isolation, identification and culture optimization of Pseudomonas putida H9, a marine bacterium producing nicotinic acid hydroxylase. Food Sci. 38: 130-136. 
  46. Luo H, Chun-Miao JI, Chang YH, Zhou BH. 2010. Rapid screening of a nicotine acid hydroxylase producing strain and its catalytic conditions. Chin. J. Process Eng. 10: 576-581. 
  47. Luo H, Yin Z, Chang Y, Xiao B. 2007. Cultivation and biotransformation of Pseudomonas sp. BK-1. Chin. J. Eng. 29: 216-220.