DOI QR코드

DOI QR Code

A Simple and Rapid Methicillin-Resistant Staphylococcus aureus (MRSA) Screening Test Using a Mannose-Binding Lectin (MBL)-Conjugated Gold Nanoparticle Probe

  • So Yeon Yi (Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) ) ;
  • Jinyoung Jeong (Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Wang Sik Lee (Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jungsun Kwon (BioNano Health Guard Research Center) ;
  • Kyungah Yoon (Department of Clinical Pathology, Daejeon Health Institute of Technology) ;
  • Kyoungsook Park (Department of Biopharmacy, Daejeon Health Institute of Technology)
  • Received : 2023.01.02
  • Accepted : 2023.02.23
  • Published : 2023.05.28

Abstract

Rapid diagnosis of methicillin-resistant Staphylococcus aureus (MRSA) is essential for guiding clinical treatment and preventing the spread of MRSA infections. Herein, we present a simple and rapid MRSA screening test based on the aggregation effect of mannose-binding lectin (MBL)-conjugated gold nanoparticles (AuNP), called the MRSA probe. Recombinant MBL protein is a member of the lectin family and part of the innate immune system. It can recognize wall teichoic acid (WTA) on the membrane of MRSA more specifically than that of methicillin-sensitive Staphylococcus aureus (MSSA) under optimized salt conditions. Thus, the MRSA probe can selectively bind to MRSA, and the aggregation of the probes on the surface of the target bacteria can be detected and analyzed by the naked eye within 5 min. To demonstrate the suitability of the method for real-world application, we tested 40 clinical S. aureus isolates (including 20 MRSA specimens) and recorded a sensitivity of 100%. In conclusion, the MRSA probe-based screening test with its excellent sensitivity has the potential for successful application in the microbiology laboratory.

Keywords

Acknowledgement

This study was supported by BioNano Health Guard Research Center funded by the Ministry of Science and ICT (MSIT) of Korea as a Global Frontier Project (Grant No. H-GUARD_2013 M3A6B2078950), the KRIBB Initiative Research Program (KGM5322321), and Daejeon Health Institute of Technology in 2022. The authors thank Prof. Yong. D. from the Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine (Korea), for providing clinical S. aureus isolates.

References

  1. Stryjewski ME, Corey GR. 2014. Methicillin-resistant Staphylococcus aureus: an evolving pathogen. Clin. Infect. Dis. 58 Suppl 1: S10-19.  https://doi.org/10.1093/cid/cit613
  2. Livermore DM. 2000. Antibiotic resistance in staphylococci. Int. J. Antimicrob. Agents 16 Suppl 1: S3-10.  https://doi.org/10.1016/S0924-8579(00)00299-5
  3. Zapun A, Contreras-Martel C, Vernet T. 2008. Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol. Rev. 32: 361-385.  https://doi.org/10.1111/j.1574-6976.2007.00095.x
  4. Pillai MM, Latha R, Sarkar G. 2012. Detection of methicillin resistance in Staphylococcus aureus by polymerase chain reaction and conventional methods: a comparative study. J. Lab. Phys. 4: 83-88.  https://doi.org/10.4103/0974-2727.105587
  5. Reddy PN, Srirama K, Dirisala VR. 2017. An update on clinical burden, diagnostic tools, and therapeutic options of Staphylococcus aureus. Infect. Dis(Auckl). 10: 1179916117703999. 
  6. Wang Y, He Y, Bhattacharyya S, Lu S, Fu Z. 2020. Recombinant bacteriophage cell-binding domain proteins for broad-spectrum recognition of methicillin-resistant Staphylococcus aureus strains. Anal. Chem. 92: 3340-3345.  https://doi.org/10.1021/acs.analchem.9b05295
  7. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RA. 1999. Phylogenetic perspectives in innate immunity. Science 284: 1313-1318.  https://doi.org/10.1126/science.284.5418.1313
  8. Super M, Thiel S, Lu J, Levinsky RJ, Turner MW. 1989. Association of low levels of mannan-binding protein with a common defect of opsonisation. Lancet 2: 1236-1239.  https://doi.org/10.1016/S0140-6736(89)91849-7
  9. Cartwright M, Rottman M, Shapiro NI, Seiler B, Lombardo P, Gamini N, et al. 2016. A Broad-spectrum infection diagnostic that detects pathogen-associated molecular patterns (PAMPs) in whole blood. EBioMedicine 9: 217-227.  https://doi.org/10.1016/j.ebiom.2016.06.014
  10. Dommett RM, Klein N, Turner MW. 2006. Mannose-binding lectin in innate immunity: past, present and future. Tissue Antigens 68: 193-209.  https://doi.org/10.1111/j.1399-0039.2006.00649.x
  11. Larvie M, Shoup T, Chang WC, Chigweshe L, Hartshorn K, White MR, et al. 2012. Mannose-binding lectin binds to amyloid β protein and modulates inflammation. J. Biomed. Biotechnol. 2012: 929803. 
  12. Mogensen TH. 2009. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22: 240-273.  https://doi.org/10.1128/CMR.00046-08
  13. Saito T, Owen DM, Jiang F, Marcotrigiano J, Gale M Jr. 2008. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454: 523-527.  https://doi.org/10.1038/nature07106
  14. Polotsky VY, Belisle JT, Mikusova K, Ezekowitz RA, Joiner KA. 1997. Interaction of human mannose-binding protein with Mycobacterium avium. J. Infect. Dis. 175: 1159-1168.  https://doi.org/10.1086/520354
  15. Saifuddin M, Hart ML, Gewurz H, Zhang Y, Spear GT. 2000. Interaction of mannose-binding lectin with primary isolates of human immunodeficiency virus type 1. J. Gen. Virol. 81: 949-955.  https://doi.org/10.1099/0022-1317-81-4-949
  16. Klabunde J, Berger J, Jensenius JC, Klinkert MQ, Zelck UE, Kremsner PG, et al. 2000. Schistosoma mansoni: adhesion of mannan-binding lectin to surface glycoproteins of cercariae and adult worms. Exp. Parasitol. 95: 231-239.  https://doi.org/10.1006/expr.2000.4539
  17. Seiler BT, Cartwright M, Dinis ALM, Duffy S, Lombardo P, Cartwright D, et al. 2019. Broad-spectrum capture of clinical pathogens using engineered Fc-mannose-binding lectin enhanced by antibiotic treatment. F1000Res. 8: 108. 
  18. Bicart-See A, Rottman M, Cartwright M, Seiler B, Gamini N, Rodas M, et al. 2016. Rapid isolation of Staphylococcus aureus pathogens from infected clinical samples using magnetic beads coated with Fc-mannose binding lectin. PLoS One 11: e0156287. 
  19. Jack DL, Turner MW. 2003. Anti-microbial activities of mannose-binding lectin. Biochem. Soc. Trans. 31: 753-757.  https://doi.org/10.1042/bst0310753
  20. Kuipers S, Aerts PC, van Dijk H. 2003. Differential microorganism-induced mannose-binding lectin activation. FEMS Immunol. Med. Microbiol. 36: 33-39.  https://doi.org/10.1016/S0928-8244(03)00032-4
  21. Neth O, Jack DL, Dodds AW, Holzel H, Klein NJ, Turner MW. 2000. Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect. Immun. 68: 688-693.  https://doi.org/10.1128/IAI.68.2.688-693.2000
  22. Takahashi K, Kurokawa K, Moyo P, Jung DJ, An JH, Chigweshe L, et al. 2013. Intradermal immunization with wall teichoic acid (WTA) elicits and augments an anti-WTA IgG response that protects mice from methicillin-resistant Staphylococcus aureus infection independent of mannose-binding lectin status. PLoS One 8: e69739. 
  23. Kurokawa K, Jung DJ, An JH, Fuchs K, Jeon YJ, Kim NH, et al. 2013. Glycoepitopes of staphylococcal wall teichoic acid govern complement-mediated opsonophagocytosis via human serum antibody and mannose-binding lectin. J. Biol. Chem. 288: 30956-30968.  https://doi.org/10.1074/jbc.M113.509893
  24. Winstel V, Kuhner P, Salomon F, Larsen J, Skov R, Hoffmann W, et al. 2015. Wall Teichoic acid glycosylation governs Staphylococcus aureus nasal colonization. mBio 6: e00632. 
  25. Kurokawa K, Takahashi K, Lee BL. 2016. The staphylococcal surface-glycopolymer wall teichoic acid (WTA) is crucial for complement activation and immunological defense against Staphylococcus aureus infection. Immunobiology 221: 1091-1101.  https://doi.org/10.1016/j.imbio.2016.06.003
  26. Mistretta N, Brossaud M, Telles F, Sanchez V, Talaga P, Rokbi B. 2019. Glycosylation of Staphylococcus aureus cell wall teichoic acid is influenced by environmental conditions. Sci. Rep. 9: 3212. 
  27. Yi SY, Jeong J, Kim KE, Park K, Shin YB. 2020. Staphylococcus aureus specific FRET probe-based antibacterial Susceptibility Testing (SF-AST) by detection of micrococcal nuclease activity. ACS Infect. Dis. 6: 215-223.  https://doi.org/10.1021/acsinfecdis.9b00260
  28. Lai HZ, Wang SG, Wu CY, Chen YC. 2015. Detection of Staphylococcus aureus by functional gold nanoparticle-based affinity surface-assisted laser desorption/ionization mass spectrometry. Anal. Chem. 87: 2114-2120.  https://doi.org/10.1021/ac503097v
  29. Liu P, Han L, Wang F, Petrenko VA, Liu A. 2016. Gold nanoprobe functionalized with specific fusion protein selection from phage display and its application in rapid, selective and sensitive colorimetric biosensing of Staphylococcus aureus. Biosens. Bioelectron. 82: 195-203. https://doi.org/10.1016/j.bios.2016.03.075