DOI QR코드

DOI QR Code

Resistance Patterns of Frequently Applied Antimicrobials and Occurrence of Antibiotic Resistance Genes in Edwardsiella tarda Detected in Edwardsiellosis-Infected Tilapia Species of Fish Farms of Punjab in Pakistan

  • Kashif Manzoor (Department of Fisheries and Aquaculture, University of Veterinary and Animal Sciences) ;
  • Fayyaz Rasool (Department of Zoology, Faisalabad Campus, University of Education) ;
  • Noor Khan (Institute of Zoology, University of the Punjab) ;
  • Khalid Mahmood Anjum (Department of Wildlife and Ecology, University of Veterinary and Animal Sciences) ;
  • Shakeela Parveen (Department of Zoology, Wildlife and Fisheries, University of Agriculture)
  • Received : 2023.01.04
  • Accepted : 2023.02.03
  • Published : 2023.05.28

Abstract

Edwardsiella tarda is one of the most significant fish pathogens, causes edwardsiellosis in a variety of freshwater fish species, and its antibiotic resistance against multiple drugs has made it a health risk worldwide. In this study, we aimed to investigate the antibiotic resistance (ABR) genes of E. tarda and establish its antibiotic susceptibility. Thus, 540 fish (299 Oreochromis niloticus, 138 O. mossambicus, and 103 O. aureus) were collected randomly from twelve fish farms in three districts of Punjab in Pakistan. E. tarda was recovered from 147 fish showing symptoms of exophthalmia, hemorrhages, skin depigmentation, ascites, and bacteria-filled nodules in enlarged liver and kidney. Antimicrobial susceptibility testing proved chloramphenicol, ciprofloxacin, and streptomycin effective, but amoxicillin, erythromycin, and flumequine ineffective in controlling edwardsiellosis. Maximum occurrence of qnrA, blaTEM, and sul3 genes of E. tarda was detected in 45% in the liver, 58%, and 42% respectively in the intestine; 46.5%, 67.2%, and 55.9% respectively in O. niloticus; 24%, 36%, and 23% respectively in summer with respect to fish organs, species, and season, respectively. Motility, H2S, indole, methyl red, and glucose tests gave positive results. Overall, E. tarda infected 27.2% of fish, which ultimately caused 7.69% mortality. The Chi-squared test of independence showed a significant difference in the occurrence of ABR genes of E. tarda with respect to sampling sites. In conclusion, the misuse of antibacterial agents has led to the emergence of ABR genes in E. tarda, which in association with high temperatures cause multiple abnormalities in infected fish and ultimately resulting in massive mortality.

Keywords

Acknowledgement

Mr. Ghulam Muhayyodin (Department of Wildlife and Ecology, University of Veterinary and Animal Sciences, Lahore, Pakistan) helped in designing a GIS map of selected fish farms of three districts. Mr. Haroon Aslam (Aqua Feed, Muzaffargarh) cooperated and assisted in visiting and sampling from fish farms of Muzaffargarh and Mandi Bahauddin.

References

  1. Manage PM. 2018. Heavy use of antibiotics in aquaculture: emerging human and animal health problems. A review. Sri Lanka J. Aquat. Sci. 23: 13-27. https://doi.org/10.4038/sljas.v23i1.7543
  2. Troell M, Kautsky N, Beveridge M, Henriksson P, Primavera J, Ronnback P, et al. 2017. In reference module in life sciences. Aquac. https://doi.org/10.1016/B978-0-12-809633-8.02007-0.
  3. FAO. 2016. Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture. Rome.
  4. Froehlich HE, Runge CA, Gentry RR, Gaines SD, Halpern BS. 2018. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl. Acad. Sci. USA 115: 5295-5300. https://doi.org/10.1073/pnas.1801692115
  5. FAO. 2020. Sustainability in action. The state of world fisheries and aquaculture series. Food and Agriculture Organization of the United Nations.
  6. Sousa SMN, Freccia A, dos Santos LD, Meurer F, Tessaro L, Bombardelli RA. 2013. Growth of Nile tilapia post-larvae from broodstock fed diet with different levels of digestible protein and digestible energy. R. Bras. Zootec. 42: 535-540. https://doi.org/10.1590/S1516-35982013000800001
  7. Amal MN, Koh CB, Nurliyana M, Suhaiba M, Nor-Amalina Z, Santha S, et al. 2018. A case of natural co-infection of tilapia lake virus and Aeromonas veronii in a Malaysian red hybrid tilapia (Oreochromis niloticus × O. mossambicus) farm experiencing high mortality. Aquac. 485: 12-16. https://doi.org/10.1016/j.aquaculture.2017.11.019
  8. Watts EMJ, Schreier JH, Lanska L, Hale SM. 2017. The rising tide of antimicrobial resistance in aquaculture: sources, sinks and solutions. Mar. Drugs. 15: 158.
  9. Seth M, Chandrasekaran N, Mukherjee A, Thomas J. 2021. Pathogenicity of Edwardsiella tarda in Oreochromis mossambicus and treatment by Tamarindus indica seed extract. Aquac Inter. 29: 1829-1841. https://doi.org/10.1007/s10499-021-00719-0
  10. Cantas L, Shah SQ, Cavaco LM, Manaia CM, Walsh F, Popowska M, et al. 2013. A brief multi-disciplinary review on antimicrobial resistance in medicine and its linkage to the global environmental microbiota. Front. Microbiol. 4: 96.
  11. Marti E, Variatza E, Balcazar JL. 2014. The role of aquatic ecosystems as reservoirs of antibiotic resistance. Trends Microbiol. 22: 36-41. https://doi.org/10.1016/j.tim.2013.11.001
  12. Schar D, Klein EY, Laxminarayan R, Gilbert M, Van Boeckel TP. 2020. Global trends in antimicrobial use in aquaculture. Sci. Rep. 10: 21878.
  13. Cabello FC, Godfrey HP, Buschmann AH, Dolz HJ. 2016. Aquaculture as yet another environmental gateway to the development and globalisation of antimicrobial resistance. Lancet Infect. Dis. 16: 127-33. https://doi.org/10.1016/S1473-3099(16)00100-6
  14. Woo SJ, Kim MS, Jeong MG, Do MY, Hwang SD, Kim WJ. 2022. Establishment of epidemiological cut-off values and the distribution of resistance genes in Aeromonas hydrophila and Aeromonas veronii isolated from aquatic animals. Antibiot. 11: 343.
  15. Munita JM, Arias CA. 2016. Mechanisms of antibiotic resistance. In: Kudva IT, editor. pp. 481-511. Virulence mechanisms of bacterial pathogens. Hoboken, NJ: John Wiley and Sons.
  16. Rodrigues MV, Falcone-Dias MF, Francisco CJ, David GS, Da Silva RI, Junior JPA. 2019. Occurrence of Edwardsiella tarda in Nile tilapia Oreochromis niloticus from Brazilian Aquaculture Edwardsiella tarda in Nile tilapia. Acta. Sci. Microbiol. 2: 13-19.
  17. Davies MY, de Oliveira MG, Cunha PVM, Franco SL, Santos SSL, Moreno ZL, et al. 2018. Edwardsiella tarda outbreak affecting fishes and aquatic birds in Brazil. Vet. Q. 38: 99-105. https://doi.org/10.1080/01652176.2018.1540070
  18. Du C, Huo X, Gu H, Wu D, Hu Y. 2021. Acid resistance system CadBA is implicated in acid tolerance and biofilm formation and is identified as a new virulence factor of Edwardsiella tarda. Vet. Res. 52: 117.
  19. Algammal AM, Mabrok M, Ezzat M, Alfifi KJ, Esawy AM, Elmasry N, et al. 2022. Prevalence, antimicrobial resistance (AMR) pattern, virulence determinant and AMR genes of emerging multi-drug resistant Edwardsiella tarda in Nile tilapia and African catfish. Aquac. 548: 737643.
  20. Butar-Butar OD, Suryanto D, Ilyas S. 2020. Detection of Edwardsiella tarda infection of catfish (Clarias gariepinus) in Central Tapanuli Regency, North Sumatra, Indonesia. IOSR J. Agric. Vet. Sci. 13: 6-13.
  21. Preena PG, Dharmaratnam A, Swaminathan RT. 2022. A peek into mass mortality caused by antimicrobial resistant Edwardsiella tarda in goldfish, Carassius auratus in Kerala. Biologia 77: 1161-1171. https://doi.org/10.1007/s11756-022-01007-9
  22. Oh WT, Jun JW, Kim HJ, Giri SS, Yun S, Kim SG, et al. 2020. Characterization and pathological analysis of a virulent Edwardsiella anguillarum strain isolated from Nile tilapia (Oreochromis niloticus) in Korea. Front. Vet. Sci. 7: 14.
  23. Charles OS, Olabisi IO, Olufemi OI, Bolarinwa AO. 2020. Detection and antibiogram of Edwardsiella tarda from Oreochromis niloticus (Tilapia fish) obtained from selected farms in Ibadan, Nigeria. J. Food Safe Hyg. 6: 38-46.
  24. Kumar P, Adikesavalu H, Abraham TJ. 2016. Prevalence of Edwardsiella tarda in commercially important finfish and shellfish of Bihar and West Bengal, India. J. Coast. Life Med. 4: 30-35. https://doi.org/10.12980/jclm.4.2016apjtd-2014-0184
  25. Nantongo M, Mkupasi EM, Byarugaba DK, Wamala SP, Mdegela RH, Walakira JK. 2019. Molecular characterization and antibiotic susceptibility of Edwardsiella tarda isolated from farmed Nile tilapia and African catfish from Wakiso, Uganda. Uganda. J. Agri. Sci. 19: 51-64.
  26. Nagy EA, Fadel, Al-Moghny FA, Ibrahim MS. 2018. Isolation, identification and pathogenicity characterization of Edwardsiella tarda isolated from Oreochromis niloticus fish farms in Kafr-Elshiekh, Egypt. Alex. J. Vet. Sci. 57: 171-179. https://doi.org/10.5455/ajvs.294237
  27. Niu G, Wongsathein D, Boonyayatra S, Khattiya K. 2019. Occurrence of multiple antibiotic resistance and genotypic characterization in Edwardsiella tarda isolated from cage-cultured hybrid red tilapia (Oreochromis sp.) in the Ping River, Northern Thailand. Aquac. Res. 50: 3643-3652. https://doi.org/10.1111/are.14322
  28. Wimalasena SHMP, Pathirana HNKS, De Silva BCJ, Hossain S, Sugaya E, Nakai T, et al. 2018. Antibiotic resistance and virulence-associated gene profiles of Edwardsiella tarda isolated from cultured fish in japan. Turk. J. Fish Aquat. Sci. 19: 141-148. https://doi.org/10.4194/1303-2712-v19_2_06
  29. Park SB, Aoki T, Jung TS. 2012. Pathogenesis of and strategies for preventing Edwardsiella tarda infection in fish. Vet. Res. 43: 67.
  30. Hou JH, Hu YH, Zhang M, Sun L. 2009. Identification and characterization of the AcrR/AcrAB system of a pathogenic Edwardsiella tarda strain. J. Gen. Appl. Microbiol. 55: 191-199. https://doi.org/10.2323/jgam.55.191
  31. Li H, Sun B, Ning X, Jiang S, Sun L. 2019. A comparative analysis of Edwardsiella tarda induced transcriptome profiles in RAW264. 7 cells reveals new insights into the strategy of bacterial immune evasion. Int. J. Mol. Sci. 20: 5724.
  32. Yamamuro T, Fukuhara A, Kang J, Takamatsu J. 2019. A case of necrotizing fasciitis following Edwardsiella tarda septicemia with gastroenteritis. J. Infect. Chemother. S1341-321X. 19. 30149-30147.
  33. Noga EJ. 2010. Fish disease diagnosis and treatment (Iowa: Iowa State University Press).
  34. Muratori MCS, Martins NE, Peixoto MTD, Oliveira AL, Ribeiro LP, Costal APR, et al. 2001. Mortalidade por "septicemia dos peixes tropicais" em tilapias criadas em consorciacao com suinos. Arq. Bras. Med. Vet. Zootec. 53: 658-662. https://doi.org/10.1590/S0102-09352001000600007
  35. Austin B, Austin DA. 2016. Miscellaneous Pathogens. In: Bacterial Fish Pathogens. Springer International Publishing. 603-642.
  36. Shah D, Shiringi S, Besser T, Call D. 2009. Molecular detection of food borne pathogens, Boca Raton: CRC Press, In Liu. (Edition), pp. 369-389. Taylor and Francis group, Florida, USA.
  37. Tenover FC. 2014. Encyclopedia of microbiology. In Schaechter M. (ed.), Antibiotic susceptibility testing, fourth ed. Academic Press, Cambridge. 2009: 67-77.
  38. Weinstein MP, Lewis JS. 2020. The clinical and laboratory standards institute subcommittee on antimicrobial susceptibility testing: background, organization, functions, and processes. J. Clin. Microbiol. 58: e01864-19.
  39. Ge M, Jin X, Zhang Y, Fang H, Chen C. 2015. Detection of drug resistance and four drug resistance genes in bacterial pathogen Edwardsiella tarda (in Chinese). Fish. Sci. 34: 300-304.
  40. Robicsek A, Strahilevitz J, Sahm DF, Jacoby GA, Hooper DC. 2006. Qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob. Agent Chemother. 50: 2872-2874. https://doi.org/10.1128/AAC.01647-05
  41. Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  42. Qiao M, Ying GG, Singer AC, Zhu YG. 2018. Review of antibiotic resistance in China and its environment. Environ. Int. 110: 160-72. https://doi.org/10.1016/j.envint.2017.10.016
  43. Wamala SP, Mugimba KK, Mutoloki S, Evensen O, Mdegela R, Byarugaba DK, et al. 2018. Occurrence and antibiotic susceptibility of fish bacteria isolated from Oreochromis niloticus (Nile tilapia) and Clarias gariepinus (African catfish) in Uganda. Fish. Aquat. Sci. 21: 1-10. https://doi.org/10.1186/s41240-017-0078-4
  44. Lo DY, Lee YJ, Wang JH, Kuo HC. 2014. Antimicrobial susceptibility and genetic characterization of oxytetracycline resistant Edwardsiella tarda isolated from diseased eels. Vet. Record. 175: 203.
  45. Algammal AM, Enany ME, El-Tarabili RM, Ghobashy MOI, Helmy YA. 2020. Prevalence, antimicrobial resistance profiles, virulence and enterotoxin-determinant genes of MRSA isolated from subclinical bovine mastitis samples in Egypt. Pathogen. 9: 362.
  46. Ali MH, Chowdhury FS, Ashrafuzzaman M, Nayem MA, Chowdhury, Haque MRU, et al. 2014. Identification, pathogenicity, antibiotic and herbal sensitivity of Edwardsiella tarda causing fish disease in Bangladesh. Cur. Res. Micro. Biotech. 2: 292-297.
  47. Noor El Deen AIE, El-Gohary MS, Abdou MS, Adel El-Gamal M. 2017. Molecular characterization of Edwardsiella tarda bacteria causing severe mortalities in cultured Oreochromis niloticus fish with treatment trials. Inter. J. Cur. Res. 9: 50962-50969.
  48. Lee SW, Wendy W. 2017. Antibiotic and heavy metal resistance of Aeromonas hydrophila and Edwardsiella tarda isolated from red hybrid tilapia (Oreochromis spp.) coinfected with motile Aeromonas septicemia and edwardsiellosis. Vet. World. 10: 803-807. https://doi.org/10.14202/vetworld.2017.803-807
  49. Ogbonne FC, Ukazu ER, Egbe FC. 2018. Antibiotics resistance pattern and plasmid profiling of Edwardsiella tarda isolated from Heterobranchus longifilis. J. Biosci. Med. 6: 95-105. https://doi.org/10.4236/jbm.2018.64008
  50. Newaj-Fyzul A, Mutani A, Ramsubhag A, Adesiyun A. 2008. Prevalence of bacterial pathogens and their anti-microbial resistance in tilapia and their pond water in Trinidad. Zoonos. Public Health. 55: 206-213. https://doi.org/10.1111/j.1863-2378.2007.01098.x
  51. Penders J, Stobberingh EE. 2008. Antibiotic resistance of motile aeromonads in indoor catfish and eel farms in the southern part of The Netherlands. Int. J. Antimicrob. Agents 31: 261-265. https://doi.org/10.1016/j.ijantimicag.2007.10.002
  52. Mahmoud E, El-Tarabili RM, Esawy AM, Elmasry N. 2021. Antibiotic resistance and antibiotic resistance genes among Edwardsiella tarda isolated from fish. Suez Canal. Vet. Med. J. SCVMJ. 26: 171-188. https://doi.org/10.21608/scvmj.2021.184978
  53. Sedek A, El Tawab AA, El-Hofy F, El-Gohary M. 2020. Antibiotic resistance genes of Edwardsiella tarda isolated from Oreochromis niloticus and Claris gariepinus. Benha Vet. Med. J. 38: 131-135. https://doi.org/10.21608/bvmj.2020.29323.1205
  54. Kummerer K. 2009. Antibiotics in the aquatic environment-a review-part I. Chemosphere. 75: 417-434. https://doi.org/10.1016/j.chemosphere.2008.11.086
  55. Katharios P, Kokkari C, Dourala N, Smyrli M. 2015. First report of Edwardsiellosis in cage-cultured sharp snout sea bream, Diplodus puntazzo from the Mediterranean. Vet. Res. 11: 155-161.
  56. Dubey S, Maiti B, Kim SH, Sivadasan SM, Kannimuthu D, Pandey PK, et al. 2019. Genotypic and phenotypic characterization of Edwardsiella isolates from different fish species and geographical areas in Asia: implications for vaccine development. Fish Dis. 42: 835-850. https://doi.org/10.1111/jfd.12984
  57. El-Seedy FR, Radwan IA, Abd El-Galil MA, Sayed HH. 2015. Phenotypic and Genotypic characterization of Edwardsiella tarda isolated from Oreochromis niloticus and Clarias gariepinus at Sohag Governorate. J. Americ. Sci. 11: 68-75.
  58. Moustafa EM, Omar AA, Abdo WS. 2016. Insight into the virulence-related genes of Edwardsiella tarda isolated from cultured freshwater fish in Egypt. World Vet. J. 6: 101-109. https://doi.org/10.5455/wvj.20160874
  59. Enany M, AL-Gammal A, Hanora A, Shagar G, El Shaffy N. 2018a. Sidr honey inhibitory effect on virulence genes of MRSA strains from animal and human origin. Suez Canal Vet. Med. J. 20: 23-30. https://doi.org/10.21608/scvmj.2015.64562
  60. Enany M, Shalaby A, El Deen AN, Wahdan A, El Kattawy Z. 2018b. Characterization of Edwardsiella species isolated from fish by using genomic DNA fingerprinting technique. Suez Canal Vet. Med. J. 23: 215-223. https://doi.org/10.21608/scvmj.2018.60542
  61. Sakazaki R. 2015. Edwardsiella. Wiley. pp. 1-12.
  62. Kim KI, Kang JY, Park JY, Joh SJ, Lee HS, Kwon YK. 2014. Phenotypic traits, virulence-associated gene profile and genetic relatedness of Edwardsiella tarda isolates from Japanese eel Anguilla japonica in Korea. Lett. Appl. Microbiol. 58: 168-176. https://doi.org/10.1111/lam.12172
  63. Panangala VS, Shoemaker CA, McNulty ST, Arias CR, Klesius PH. 2006. Intra- and interspecific phenotypic characteristics of fish-pathogenic Edwardsiella ictaluri and E. tarda. Aquac. Res.37: 49-60. https://doi.org/10.1111/j.1365-2109.2005.01394.x
  64. Iregui CA, Guarin M, Tibata VM, Ferguson HW. 2012. Novel brain lesions caused by Edwardsiella tarda in a red tilapia (Oreochromis spp.). J. Vet. Diagn. Investig. 24: 446-449. https://doi.org/10.1177/1040638711435232
  65. Devi TB, Abraham TJ and Kamilya D. 2016. Susceptibility and pathological consequences of catla, Catla catla (Hamilton) experimentally infected with Edwardsiella tarda. Arch. Pol. Fish. 24: 209-217. https://doi.org/10.1515/aopf-2016-0018
  66. Huong NTT, Thuy HL, Gallardo WG and Thanh HN. 2014. Bacterial population in intensive tilapia (Oreochromis niloticus) culture pond sediment in Hai Duong province, Vietnam. Int. J. Fish. 6: 133-139.