과제정보
This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2021R1C1C2003223 and NRF-2022R1A2C2012209), and the Chung-Ang University Research Grants in 2022.
참고문헌
- Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. 2014. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 11: 506-514. https://doi.org/10.1038/nrgastro.2014.66
- Kim DH, Jeong D, Kang IB, Kim H, Song KY, Seo KH. 2017. Dual function of Lactobacillus kefiri DH5 in preventing high-fat-diet-induced obesity: direct reduction of cholesterol and upregulation of PPAR-α in adipose tissue. Mol. Nutr. Food Res. 61: 1700252.
- Bejar W, Hamden K, Ben Salah RB, Chouayekh H. 2013. Lactobacillus plantarum TN627 significantly reduces complications of alloxan-induced diabetes in rats. Anaerobe 24: 4-11 https://doi.org/10.1016/j.anaerobe.2013.08.006
- Lee ES, Song EJ, Nam YD, Lee SY. 2018. Probiotics in human health and disease: from nutribiotics to pharmabiotics. J. Microbiol. 56: 773-782. https://doi.org/10.1007/s12275-018-8293-y
- Zheng J, Wittouck S, Salvetti E, Franz CM, Harris HM, Mattarelli P, et al. 2020. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70: 2782-2858. https://doi.org/10.1099/ijsem.0.004107
- Sankar NR, Priyanka VD, Reddy PS, Rajanikanth P, Kumar VK, Indira M. 2012. Purification and characterization of bacteriocin produced by Lactobacillus plantarum isolated from cow milk. Int. J. Microbiol. Res. 3: 133-137.
- Rejiniemon TS, Hussain RR, Rajamani B. 2015. In-vitro functional properties of Lactobacillus plantarum isolated from fermented ragi malt. S. Ind. J. Biol. Sci. 1: 15-23. https://doi.org/10.22205/sijbs/2015/v1/i1/100437
- Ribeiro SC, Stanton C, Yang B, Ross RP, Silva CCG. 2018. Conjugated linoleic acid production and probiotic assessment of Lactobacillus plantarum isolated from Pico cheese. LWT 90: 403-411. https://doi.org/10.1016/j.lwt.2017.12.065
- Yang EJ, Chang HC. 2008. Antifungal activity of Lactobacillus plantarum isolated from kimchi. Microbiol. Biotechnol. Lett. 36: 276-284.
- Chong HX, Yusoff NAA, Hor YY, Lew LC, Jaafar M, Choi SB, et al. 2019. Lactobacillus plantarum DR7 alleviates stress and anxiety in adults: a randomised, double-blind, placebo-controlled study. Benef. Microbes 10: 55-373. https://doi.org/10.3920/BM2017.0146
- Spinler JK, Sontakke A, Hollister EB, Venable SF, Oh PL, Balderas MA, et al. 2014. From prediction to function using evolutionary genomics: human-specific ecotypes of Lactobacillus reuteri have diverse probiotic functions. Genome Biol. Evol. 6: 1772-1789. https://doi.org/10.1093/gbe/evu137
- Beck BR, Park GS, Lee YH, Im S, Jeong DY, Kang J. 2019. Whole genome analysis of Lactobacillus plantarum strains isolated from kimchi and determination of probiotic properties to treat mucosal infections by Candida albicans and Gardnerella vaginalis. Front. Microbiol. 10: 433
- Douillard FP, Ribbera A, Ji HM, Kant R, Pietila TE, Randazzo C, et al. 2013. Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics. Appl. Environ. Microbiol. 79: 1923-1933. https://doi.org/10.1128/AEM.03467-12
- Fitzpatrick TB, Amrhein N, Kappes B, Macheroux P, Tews I, Raschle T. 2007. Two independent routes of de novo vitamin B6 biosynthesis: not that different after all. Biochem. J. 407: 1-13. https://doi.org/10.1042/BJ20070765
- Hellmann H, Mooney S. 2010. Vitamin B6: a molecule for human health? Molecules 15: 442-459. https://doi.org/10.3390/molecules15010442
- Colinas M, Eisenhut M, Tohge T, Pesquera M, Fernie AR, Weber AP, et al. 2016. Balancing of B6 vitamers is essential for plant development and metabolism in Arabidopsis. Plant Cell 28: 439-453. https://doi.org/10.1105/tpc.15.01033
- Wrenger C, Eschbach ML, Muller IB, Warnecke D, Walter RD. 2005. Analysis of the vitamin B6 biosynthesis pathway in the human malaria parasite Plasmodium falciparum. J. Biol. Chem. 280: 5242-5248. https://doi.org/10.1074/jbc.M412475200
- Lane DJ. 1991. 16S/23S rRNA sequencing. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic Acid Techniques in Bacterial Systematic, pp. 115-175. John Wiley and Sons, New York, USA.
- Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. 2008. NCBI BLAST: a better web interface. Nucleic Acids Res. 36: W5-W9. https://doi.org/10.1093/nar/gkn201
- Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33: 1870-1874. https://doi.org/10.1093/molbev/msw054
- Meier-Kolthoff JP, Goker M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10: 2182.
- Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75
- Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44: 6614-6624. https://doi.org/10.1093/nar/gkw569
- Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, et al. 2020. The PATRIC Bioinformatics Resource Center: expanding data and analysis capabilities. Nucleic Acids Res. 48: D606-D612 https://doi.org/10.1093/nar/gkz943
- Wu S, Zhu Z, Fu L, Niu B, Li W. 2011. WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genomics 12: 444.
- Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. 2014. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 42: D199-D205. https://doi.org/10.1093/nar/gkt1076
- Alcock BP, Raphenya AR, Lau TT, Tsang KK, Bouchard M, Edalatmand A, et al. 2020. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48: D517-D525 https://doi.org/10.1093/nar/gkz935
- Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, et al. 2020. ResFinder 4.0 for predictions of phenotypes from genotypes. J. Antimicrob. Chemother. 75: 3491-3500. https://doi.org/10.1093/jac/dkaa345
- Liu B, Zheng D, Jin Q, Chen L, Yang J. 2019. VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 47: D687-D692. https://doi.org/10.1093/nar/gky1080
- Cosentino S, Voldby Larsen M, Moller Aarestrup F, Lund O. 2013. PathogenFinder-distinguishing friend from foe using bacterial whole genome sequence data. PLoS One 8: e77302.
- Lee I, Kim YO, Park SC, Chun J. 2016. OrthoANI: an improved algorithm and software for calculating average nucleotide identity. Int. J. Syst. Evol. Microbiol. 66: 1100-1103 https://doi.org/10.1099/ijsem.0.000760
- Meier-Kolthoff JP, Auch AF, Klenk HP, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60.
- Grissa I, Vergnaud G, Pourcel C. 2007. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res. 35: W52-W57. https://doi.org/10.1093/nar/gkm360
- Smetankova J, Hladikova Z, Valach F, Zimanova M, Kohajdova Z, Greif G, et al. 2012. Influence of aerobic and anaerobic conditions on the growth and metabolism of selected strains of Lactobacillus plantarum. Acta. Chimica. Slovaca. 5: 204
- Byun R, Nadkarni MA, Chhour KL, Martin FE, Jacques NA, Hunter N. 2004. Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. J. Clin. Microbiol. 42: 3128-3136. https://doi.org/10.1128/JCM.42.7.3128-3136.2004
- Yu J, Ahn S, Kim K, Caetano-Anolles K, Lee C, Kang J, et al. 2017. Comparative genomic analysis of Lactobacillus plantarum GB-LP1 isolated from traditional Korean fermented food. J. Microbiol. Biotechnol. 27: 1419-1427. https://doi.org/10.4014/jmb.1704.04005
- Moghadam MS, Foo HL, Leow TC, Rahim RA, Loh TC. 2010. Novel bacteriocinogenic Lactobacillus plantarum strains and their differentiation by sequence analysis of 16S rDNA, 16S-23S and 23S-5S intergenic spacer regions and randomly amplified polymorphic DNA analysis. Food Technol. Biotechnol. 48: 476-483.
- El Halfawy NM, El Naggar MY, Andrews SC. 2017. Complete genome sequence of Lactobacillus plantarum 10CH, a potential probiotic lactic acid bacterium with potent antimicrobial activity. Genome. Announc. 5: e01398-17.
- Wan KH, Yu C, Park S, Hammonds AS, Booth BW, Celniker SE. 2017. Complete genome sequence of Lactobacillus plantarum oregon-R-modENCODE strain BDGP2 isolated from Drosophila melanogaster gut. Genome Announc. 5: e01155-17.
- De Jesus LCL, De Jesus Sousa T, Coelho-Rocha ND, Profeta R, Barroso FAL, Drumond MM, et al. 2021. Safety evaluation of Lactobacillus delbrueckii subsp. lactis CIDCA 133: a health-promoting bacteria. Probiotics Antimicrob. Proteins 13: 1-14. https://doi.org/10.1007/s12602-020-09640-z
- European Food Safety Authority (EFSA). 2007. Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA-Opinion of the Scientific Committee. EFSA. Jol. 5: 587
- Li B, Zhan M, Evivie SE, Jin D, Zhao L, Chowdhury S, et al. 2018. Evaluating the safety of potential probiotic Enterococcus durans KLDS6.0930 using whole genome sequencing and oral toxicity study. Front. Microbiol. 9: 1943.
- Papadimitriou K, Alegria A, Bron PA, de Angelis M, Gobbetti M, Kleerebezem M, et al. 2016. Stress physiology of lactic acid bacteria. Microbiol. Mol. Biol. Rev. 80: 837-890. https://doi.org/10.1128/MMBR.00076-15
- Tran TD, Ali MA, Lee D, Felix MA, Luallen RJ. 2022. Bacterial filamentation as a mechanism for cell-to-cell spread within an animal host. Nat. Commun. 13: 693.
- Yang Z, Xu M, Li Q, Wang T, Zhang B, Zhao H, et al. 2021. The beneficial effects of polysaccharide obtained from persimmon (Diospyros kaki L.) on the proliferation of Lactobacillus and gut microbiota. Int. J. Biol. Macromol. 182: 1874-1882. https://doi.org/10.1016/j.ijbiomac.2021.05.178
- Zhang C, Ma K, Nie K, Deng M, Luo W, Wu X, et al. 2022. Assessment of the safety and probiotic properties of Roseburia intestinalis: a potential "next generation probiotic". Front. Microbiol. 13: 973046.
- Liu Y, Tang H, Lin Z, Xu P. 2015. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnol. Adv. 33: 1484-1492. https://doi.org/10.1016/j.biotechadv.2015.06.001
- Desriac N, Broussolle V, Postollec F, Mathot AG, Sohier D, Coroller L, et al. 2013. Bacillus cereus cell response upon exposure to acid environment: toward the identification of potential biomarkers. Front. Microbiol. 4: 284.
- Padan E, Venturi M, Gerchman Y, Dover N. 2001. Na(+)/H(+) antiporters. Biochim. Biophys. Acta 1505: 144-157. https://doi.org/10.1016/S0005-2728(00)00284-X
- Oliveira LC, Saraiva TD, Silva WM, Pereira UP, Campos BC, Benevides LJ, et al. 2017. Analyses of the probiotic property and stress resistance-related genes of Lactococcus lactis subsp. lactis NCDO 2118 through comparative genomics and in vitro assays. PLoS One 12: e0175116.
- Lim SM. 2014. Antimutagenicity activity of the putative probiotic strain Lactobacillus paracasei subsp. tolerans JG22 isolated from pepper leaves Jangajji. Food. Sci. Biotechnol. 23: 141-150. https://doi.org/10.1007/s10068-014-0019-2
- Wu Q, Tun HM, Leung FCC, Shah NP. 2014. Genomic insights into high exopolysaccharide-producing dairy starter bacterium Streptococcus thermophilus ASCC 1275. Sci. Rep. 4: 4974.
- Zeng Z, Zuo F, Marcotte H. 2019. Putative adhesion factors in vaginal Lactobacillus gasseri DSM 14869: functional characterization. Appl. Environ. Microbiol. 85: e00800-19. https://doi.org/10.1128/AEM.00800-19
- Henderson B, Nair S, Pallas J, Williams MA. 2011. Fibronectin: a multidomain host adhesin targeted by bacterial fibronectin-binding proteins. FEMS. Microbiol. Rev. 35: 147-200. https://doi.org/10.1111/j.1574-6976.2010.00243.x
- Ganzle MG. 2015. Lactic metabolism revisited: metabolism of lactic acid bacteria in food fermentations and food spoilage. Curr. Opin. Food Sci. 2: 106-117 https://doi.org/10.1016/j.cofs.2015.03.001
- Di Salvo ML, Contestabile R, Safo MK. 2011. Vitamin B6 salvage enzymes: mechanism, structure and regulation. Biochim. Biophys. Acta 1814: 1597-1608. https://doi.org/10.1016/j.bbapap.2010.12.006
- Booth AA, Khalifah RG, Todd P, Hudson BG. 1997. In vitro kinetic studies of formation of antigenic advanced glycation end products (AGEs): novel inhibition of post-Amadori glycation pathways. J. Biol. Chem. 272: 5430-5437. https://doi.org/10.1074/jbc.272.9.5430
- Kim HH, Kang YR, Lee JY, Chang HB, Lee KW, Apostolidis E, et al. 2018. The postprandial anti-hyperglycemic effect of pyridoxine and its derivatives using in vitro and in vivo animal models. Nutrients 10: 285.