DOI QR코드

DOI QR Code

Recent Advancements in Technologies to Detect Enterohaemorrhagic Escherichia coli Shiga Toxins

  • Jeongtae Kim (Department of Electronic Engineering, Hanbat National University) ;
  • Jun Bong Lee (College of Veterinary Medicine & Institute of Veterinary Science, Kangwon National University) ;
  • Jaewon Park (Green Manufacturing Research Center, Korea University) ;
  • Chiwan Koo (Department of Electronic Engineering, Hanbat National University) ;
  • Moo-Seung Lee (Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology)
  • Received : 2022.12.13
  • Accepted : 2023.02.13
  • Published : 2023.05.28

Abstract

Shiga toxin (Stxs)-producing enterohaemorrhagic Escherichia coli (EHEC) and Shigella dysenteriae serotype 1 are major causative agents of severe bloody diarrhea (known as hemorrhagic colitis) and hemolytic uremic syndrome (HUS) associated with extraintestinal complications such as acute renal failure and neurologic impairment in infected patients under 9 years of age. Extreme nephrotoxicity of Stxs in HUS patients is associated with severe outcomes, highlighting the need to develop technologies to detect low levels of the toxin in environmental or food samples. Currently, the conventional polymerase chain reaction (PCR) or immunoassay is the most broadly used assay to detect the toxin. However, these assays are laborious, time-consuming, and costly. More recently, numerous studies have described novel, highly sensitive, and portable methods for detecting Stxs from EHEC. To contextualize newly emerging Stxs detection methods, we briefly explain the basic principles of these methods, including lateral flow assays, optical detection, and electrical detection. We subsequently describe existing and newly emerging rapid detection technologies to identify and measure Stxs.

Keywords

Acknowledgement

This work was supported by the KRIBB Research Initiative Program (KGM5322321) and a grant from the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (2018M3A9H4077992, 2022R1A2C1003699, 2022M3H9A1084279) and also the MSIT (Ministry of Science and ICT), Korea, under the ICAN (ICT Challenge and Advanced Network of HRD) program (IITP-2022-RS-2022-00156212) supervised by the IITP (Institute of Information & Communications Technology Planning & Evaluation).

References

  1. Tesh VL, Burris JA, Owens JW, Gordon VM, Wadolkowski EA, O'Brien AD, et al. 1993. Comparison of the relative toxicities of Shiga-like toxins type I and type II for mice. Infect. Immun. 61: 3392-3402. https://doi.org/10.1128/iai.61.8.3392-3402.1993
  2. Smith MJ, Teel LD, Carvalho HM, Melton-Celsa AR, O'Brien AD. 2006. Development of a hybrid Shiga holotoxoid vaccine to elicit heterologous protection against Shiga toxins types 1 and 2. Vaccine 24: 4122-4129. https://doi.org/10.1016/j.vaccine.2006.02.035
  3. Head SC, Karmali MA, Lingwood CA. 1991. Preparation of VT1 and VT2 hybrid toxins from their purified dissociated subunits. Evidence for B subunit modulation of a subunit function. J. Biol. Chem. 266: 3617-3621. https://doi.org/10.1016/S0021-9258(19)67839-7
  4. Gallegos KM, Conrady DG, Karve SS, Gunasekera TS, Herr AB, Weiss AA. 2012. Shiga toxin binding to glycolipids and glycans. PLoS One 7: e30368.
  5. Mahfoud R, Manis A, Binnington B, Ackerley C, Lingwood CA. 2010. A major fraction of glycosphingolipids in model and cellular cholesterol-containing membranes is undetectable by their binding proteins. J. Biol. Chem. 285: 36049-36059. https://doi.org/10.1074/jbc.M110.110189
  6. March SB, Ratnam S. 1986. Sorbitol-MacConkey medium for detection of Escherichia coli O157:H7 associated with hemorrhagic colitis. J. Clin. Microbiol. 23: 869-872. https://doi.org/10.1128/jcm.23.5.869-872.1986
  7. Gould LH, Bopp C, Strockbine N, Atkinson R, Baselski V, Body B, et al. 2009. Recommendations for diagnosis of Shiga toxin--producing Escherichia coli infections by clinical laboratories. MMWR Recomm. Rep. 58: 1-14.
  8. Church DL, Emshey D, Semeniuk H, Lloyd T, Pitout JD. 2007. Evaluation of BBL CHROMagar O157 versus sorbitol-MacConkey medium for routine detection of Escherichia coli O157 in a centralized regional clinical microbiology laboratory. J. Clin. Microbiol. 45: 3098-3100. https://doi.org/10.1128/JCM.00426-07
  9. Zadik PM, Chapman PA, Siddons CA. 1993. Use of tellurite for the selection of verocytotoxigenic Escherichia coli O157. J. Med. Microbiol. 39: 155-158. https://doi.org/10.1099/00222615-39-2-155
  10. Borczyk AA, Harnett N, Lombos M, Lior H. 1990. False-positive identification of Escherichia coli O157 by commercial latex agglutination tests. Lancet 336: 946-947. https://doi.org/10.1016/0140-6736(90)92322-9
  11. Wang F, Yang Q, Kase JA, Meng J, Clotilde LM, Lin A, et al. 2013. Current trends in detecting non-O157 Shiga toxin-producing Escherichia coli in food. Foodborne Pathog. Dis. 10: 665-677. https://doi.org/10.1089/fpd.2012.1448
  12. Vimont A, Vernozy-Rozand C, Delignette-Muller ml. 2006. Isolation of E. coli O157:H7 and non-O157 STEC in different matrices: review of the most commonly used enrichment protocols. Lett. Appl. Microbiol. 42: 102-108. https://doi.org/10.1111/j.1472-765X.2005.01818.x
  13. Hussein HS, Bollinger LM. 2008. Influence of selective media on successful detection of Shiga toxin-producing Escherichia coli in food, fecal, and environmental samples. Foodborne Pathog. Dis. 5: 227-244. https://doi.org/10.1089/fpd.2008.0081
  14. Lin A, Nguyen L, Clotilde LM, Kase JA, Son I, Lauzon CR. 2012. Isolation of Shiga toxin-producing Escherichia coli from fresh produce using STEC heart infusion washed blood agar with mitomycin-C. J. Food Prot. 75: 2028-2030. https://doi.org/10.4315/0362-028X.JFP-12-157
  15. Mauro SA, Koudelka GB. 2011. Shiga toxin: expression, distribution, and its role in the environment. Toxins (Basel) 3: 608-625. https://doi.org/10.3390/toxins3060608
  16. Yoon JW, Hovde CJ. 2008. All blood, no stool: enterohemorrhagic Escherichia coli O157:H7 infection. J. Vet. Sci. 9: 219-231. https://doi.org/10.4142/jvs.2008.9.3.219
  17. Teel LD, Daly JA, Jerris RC, Maul D, Svanas G, O'Brien AD, et al. 2007. Rapid detection of Shiga toxin-producing Escherichia coli by optical immunoassay. J. Clin. Microbiol. 45: 3377-3380. https://doi.org/10.1128/JCM.00837-07
  18. Park CH, Kim HJ, Hixon DL, Bubert A. 2003. Evaluation of the duopath verotoxin test for detection of Shiga toxins in cultures of human stools. J. Clin. Microbiol. 41: 2650-2653. https://doi.org/10.1128/JCM.41.6.2650-2653.2003
  19. Kehl KS, Havens P, Behnke CE, Acheson DW. 1997. Evaluation of the premier EHEC assay for detection of Shiga toxin-producing Escherichia coli. J. Clin. Microbiol. 35: 2051-2054. https://doi.org/10.1128/jcm.35.8.2051-2054.1997
  20. Gavin PJ, Peterson LR, Pasquariello AC, Blackburn J, Hamming MG, Kuo KJ, et al. 2004. Evaluation of performance and potential clinical impact of ProSpecT Shiga toxin Escherichia coli microplate assay for detection of Shiga Toxin-producing E. coli in stool samples. J. Clin. Microbiol. 42: 1652-1656. https://doi.org/10.1128/JCM.42.4.1652-1656.2004
  21. Carroll KC, Adamson K, Korgenski K, Croft A, Hankemeier R, Daly J, et al. 2003. Comparison of a commercial reversed passive latex agglutination assay to an enzyme immunoassay for the detection of Shiga toxin-producing Escherichia coli. Eur. J. Clin. Microbiol. Infect. Dis. 22: 689-692. https://doi.org/10.1007/s10096-003-1053-9
  22. Willford J, Mills K, Goodridge LD. 2009. Evaluation of three commercially available enzyme-linked immunosorbent assay kits for detection of Shiga toxin. J. Food Prot. 72: 741-747. https://doi.org/10.4315/0362-028X-72.4.741
  23. He XH, Kong QL, Patfield S, Skinner C, Rasooly R. 2016. A new immunoassay for detecting all subtypes of Shiga toxins produced by Shiga toxin-producing E. coli in ground beef. PLoS One 11: e0148092.
  24. Zhao X, Lin CW, Wang J, Oh DH. 2014. Advances in rapid detection methods for foodborne pathogens. J. Microbiol. Biotechnol. 24: 297-312. https://doi.org/10.4014/jmb.1310.10013
  25. Yeni F, Acar S, Polat OG, Soyer Y, Alpas H. 2014. Rapid and standardized methods for detection of foodborne pathogens and mycotoxins on fresh produce. Food Control 40: 359-367. https://doi.org/10.1016/j.foodcont.2013.12.020
  26. Chien YY, Jan MD, Adak AK, Tzeng HC, Lin YP, Chen YJ, et al. 2008. Globotriose-functionalized gold nanoparticles as multivalent probes for Shiga-like toxin. Chembiochem 9: 1100-1109. https://doi.org/10.1002/cbic.200700590
  27. Nataro JP, Kaper JB. 1998. Diarrheagenic Escherichia coli. Clin. Microbiol. Rev. 11: 142-201. https://doi.org/10.1128/CMR.11.1.142
  28. Kuo FY, Chang BY, Wu CY, Mong KK, Chen YC. 2015. Magnetic nanoparticle-based platform for characterization of Shiga-like toxin 1 from complex samples. Anal. Chem. 87: 10513-10520. https://doi.org/10.1021/acs.analchem.5b02712
  29. Persson S, Olsen KE, Scheutz F, Krogfelt KA, Gerner-Smidt P. 2007. A method for fast and simple detection of major diarrhoeagenic Escherichia coli in the routine diagnostic laboratory. Clin. Microbiol. Infect. 13: 516-524. https://doi.org/10.1111/j.1469-0691.2007.01692.x
  30. Sharma VK. 2002. Detection and quantitation of enterohemorrhagic Escherichia coli O157, O111, and O26 in beef and bovine feces by real-time polymerase chain reaction. J. Food Prot. 65: 1371-1380. https://doi.org/10.4315/0362-028X-65.9.1371
  31. Fratamico PM, Bagi LK, Cray WC, Jr., Narang N, Yan X, Medina M, et al. 2011. Detection by multiplex real-time polymerase chain reaction assays and isolation of Shiga toxin-producing Escherichia coli serogroups O26, O45, O103, O111, O121, and O145 in ground beef. Foodborne Pathog. Dis. 8: 601-607. https://doi.org/10.1089/fpd.2010.0773
  32. Jinneman KC, Yoshitomi KJ, Weagant SD. 2003. Multiplex real-time PCR method to identify Shiga toxin genes stx1 and stx2 and Escherichia coli O157:H7/H- serotype. Appl. Environ. Microbiol. 69: 6327-6333. https://doi.org/10.1128/AEM.69.10.6327-6333.2003
  33. Fratamico PM, Bagi LK. 2012. Detection of Shiga toxin-producing Escherichia coli in ground beef using the GeneDisc real-time PCR system. Front. Cell. Infect. Microbiol. 2: 152.
  34. Li B, Liu H, Wang W. 2017. Multiplex real-time PCR assay for detection of Escherichia coli O157:H7 and screening for non-O157 Shiga toxin-producing E. coli. BMC Microbiol. 17: 215.
  35. Omiccioli E, Amagliani G, Brandi G, Magnani M. 2009. A new platform for Real-Time PCR detection of Salmonella spp., Listeria monocytogenes and Escherichia coli O157 in milk. Food Microbiol. 26: 615-622. https://doi.org/10.1016/j.fm.2009.04.008
  36. Yoshitomi KJ, Jinneman KC, Weagant SD. 2006. Detection of Shiga toxin genes stx1, stx2, and the +93 uidA mutation of E. coli O157:H7/H-using SYBR Green I in a real-time multiplex PCR. Mol. Cell. Probes. 20: 31-41. https://doi.org/10.1016/j.mcp.2005.09.002
  37. Brusa V, Galli L, Linares LH, Ortega EE, Liron JP, Leotta GA. 2015. Development and validation of two SYBR green PCR assays and a multiplex real-time PCR for the detection of Shiga toxin-producing Escherichia coli in meat. J. Microbiol. Methods 119: 10-17. https://doi.org/10.1016/j.mimet.2015.09.013
  38. Levin RE. 2004. The application of real-time PCR to food and agricultural systems. A review. Food Biotechnol. 18: 97-133. https://doi.org/10.1081/FBT-120030386
  39. Martin CC, Svanevik CS, Lunestad BT, Sekse C, Johannessen GS. 2019. Isolation and characterisation of Shiga toxin-producing Escherichia coli from Norwegian bivalves. Food Microbiol. 84: 103268.
  40. Ercoli L, Farneti S, Zicavo A, Mencaroni G, Blasi G, Striano G, et al. 2016. Prevalence and characteristics of verotoxigenic Escherichia coli strains isolated from pigs and pork products in Umbria and Marche regions of Italy. Int. J. Food Microbiol. 232: 7-14. https://doi.org/10.1016/j.ijfoodmicro.2016.05.002
  41. Cloke J, Matheny S, Swimley M, Tebbs R, Burrell A, Flannery J, et al. 2016. Validation of the applied biosystems rapidfinder shiga toxin-producing E. coli (STEC) Detection Workflow. J AOAC Int. 99: 1537-1554. https://doi.org/10.5740/jaoacint.16-0235
  42. Costa M, Sucari A, Epszteyn S, Oteiza J, Gentiluomo J, Melamed C, et al. 2019. Comparison of six commercial systems for the detection of non-O157 STEC in meat and vegetables. Food Microbiol. 84: 103273.
  43. Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N, et al. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28: E63.
  44. Maruyama F, Kenzaka T, Yamaguchi N, Tani K, Nasu M. 2003. Detection of bacteria carrying the stx2 gene by in situ loop-mediated isothermal amplification. Appl. Environ. Microbiol. 69: 5023-5028. https://doi.org/10.1128/AEM.69.8.5023-5028.2003
  45. Wang F, Jiang L, Ge B. 2012. Loop-mediated isothermal amplification assays for detecting shiga toxin-producing Escherichia coli in ground beef and human stools. J. Clin. Microbiol. 50: 91-97. https://doi.org/10.1128/JCM.05612-11
  46. Wang F, Yang Q, Qu Y, Meng J, Ge B. 2014. Evaluation of a loop-mediated isothermal amplification suite for the rapid, reliable, and robust detection of Shiga toxin-producing Escherichia coli in produce. Appl. Environ. Microbiol. 80: 2516-2525. https://doi.org/10.1128/AEM.04203-13
  47. Incili GK, Koluman A, Akture A, Atasalan A. 2019. Validation and verification of LAMP, ISO, and VIDAS UP methods for detection of Escherichia coli O157:H7 in different food matrices. J. Microbiol. Methods 165: 105697.
  48. Kayali AY, Ozawa J, Nishibuchi M. 2021. Corrigendum: Development and improvement of methods to disinfect raw beef using calcium hydroxide-ethanol-lactate-based food disinfectant for safe consumption. Front. Microbiol. 12: 773509.
  49. Lee MS, Tesh VL. 2019. Roles of Shiga toxins in immunopathology. Toxins (Basel) 11: 212.
  50. Sandvig K, van Deurs B. 2002. Transport of protein toxins into cells: pathways used by ricin, cholera toxin and Shiga toxin. FEBS Lett. 529: 49-53. https://doi.org/10.1016/S0014-5793(02)03182-4
  51. O'Loughlin EV, Robins-Browne RM. 2001. Effect of Shiga toxin and Shiga-like toxins on eukaryotic cells. Microbes Infect. 3: 493-507. https://doi.org/10.1016/S1286-4579(01)01405-8
  52. Endo Y. 1988. Mechanism of action of ricin and related toxins on the inactivation of eukaryotic ribosomes. Cancer Treat. Res. 37: 75-89. https://doi.org/10.1007/978-1-4613-1083-9_5
  53. O'Brien AD, Tesh VL, Donohue-Rolfe A, Jackson MP, Olsnes S, Sandvig K, et al. 1992. Shiga toxin: biochemistry, genetics, mode of action, and role in pathogenesis. Curr. Top. Microbiol. Immunol. 180: 65-94.
  54. Konowalchuk J, Speirs JI, Stavric S. 1977. Vero response to a cytotoxin of Escherichia coli. Infect. Immun. 18: 775-779. https://doi.org/10.1128/iai.18.3.775-779.1977
  55. Tesh VL, Ramegowda B, Samuel JE. 1994. Purified Shiga-like toxins induce expression of proinflammatory cytokines from murine peritoneal macrophages. Infect. Immun. 62: 5085-5094. https://doi.org/10.1128/iai.62.11.5085-5094.1994
  56. Speirs JI, Stavric S, Konowalchuk J. 1977. Assay of Escherichia coli heat-labile enterotoxin with vero cells. Infect. Immun. 16: 617-622. https://doi.org/10.1128/iai.16.2.617-622.1977
  57. Roberts PH, Davis KC, Garstka WR, Bhunia AK. 2001. Lactate dehydrogenase release assay from Vero cells to distinguish verotoxin producing Escherichia coli from non-verotoxin producing strains. J. Microbiol. Methods 43: 171-181. https://doi.org/10.1016/S0167-7012(00)00222-0
  58. Luz D, Chen G, Maranhao AQ, Rocha LB, Sidhu S, Piazza RM. 2015. Development and characterization of recombinant antibody fragments that recognize and neutralize in vitro Stx2 toxin from Shiga toxin-producing Escherichia coli. PLoS One 10: e0120481.
  59. To CZ, Bhunia AK. 2019. Three dimensional vero cell-platform for rapid and sensitive screening of Shiga-toxin producing Escherichia coli. Front. Microbiol. 10: 949.
  60. Ravi M, Paramesh V, Kaviya SR, Anuradha E, Solomon FD. 2015. 3D cell culture systems: advantages and applications. J. Cell. Physiol. 230: 16-26. https://doi.org/10.1002/jcp.24683
  61. Barrila J, Crabbe A, Yang J, Franco K, Nydam SD, Forsyth RJ, et al. 2018. Modeling host-pathogen interactions in the context of the microenvironment: Three-dimensional cell culture comes of age. Infect. Immun. 86: e00282-18.
  62. Moyano A, Serrano-Pertierra E, Salvador M, Martinez-Garcia JC, Rivas M, Blanco-Lopez MC. 2020. Magnetic lateral flow immunoassays. Diagnostics (Basel) 10: 288.
  63. Qi X, Huang Y, Lin Z, Xu L, Yu H. 2016. Dual-quantum-dots-labeled lateral flow strip rapidly quantifies procalcitonin and C-reactive protein. Nanoscale Res. Lett. 11: 167.
  64. Wang C, Peng J, Liu DF, Xing KY, Zhang GG, Huang Z, et al. 2018. Lateral flow immunoassay integrated with competitive and sandwich models for the detection of aflatoxin M(1) and Escherichia coli O157:H7 in milk. J. Dairy Sci. 101: 8767-8777. https://doi.org/10.3168/jds.2018-14655
  65. Baptista P, Pereira E, Eaton P, Doria G, Miranda A, Gomes I, et al. 2008. Gold nanoparticles for the development of clinical diagnosis methods. Anal. Bioanal. Chem. 391: 943-950. https://doi.org/10.1007/s00216-007-1768-z
  66. Tao C, Zhang Q, Feng N, Shi D, Liu B. 2016. Development of a colloidal gold immunochromatographic strip assay for simple and fast detection of human alpha-lactalbumin in genetically modified cow milk. J. Dairy Sci. 99: 1773-1779. https://doi.org/10.3168/jds.2015-9919
  67. Serebrennikova KV, Hendrickson OD, Zvereva EA, Popravko DS, Zherdev AV, Xu C, et al. 2020. A Comparative study of approaches to improve the sensitivity of lateral flow immunoassay of the antibiotic lincomycin. Biosensors (Basel) 10: 198.
  68. Lu T, Zhu KD, Huang C, Wen T, Jiao YJ, Zhu J, et al. 2019. Rapid detection of Shiga toxin type II using lateral flow immunochromatography test strips of colorimetry and fluorimetry. Analyst 145: 76-82. https://doi.org/10.1039/C9AN01996K
  69. Wang C, Xiao R, Wang S, Yang X, Bai Z, Li X, et al. 2019. Magnetic quantum dot based lateral flow assay biosensor for multiplex and sensitive detection of protein toxins in food samples. Biosens Bioelectron. 146: 111754.
  70. Tripathi P, Upadhyay N, Nara S. 2018. Recent advancements in lateral flow immunoassays: A journey for toxin detection in food. Crit. Rev. Food Sci. Nutr. 58: 1715-1734. https://doi.org/10.1080/10408398.2016.1276048
  71. Ha Y, Ko S, Kim I, Huang Y, Mohanty K, Huh C, et al. 2018. Recent advances incorporating superparamagnetic nanoparticles into immunoassays. ACS Appl. Nano Mater. 1: 512-521. https://doi.org/10.1021/acsanm.7b00025
  72. Vermesh O, Aalipour A, Ge TJ, Saenz Y, Guo Y, Alam IS, et al. 2018. An intravascular magnetic wire for the high-throughput retrieval of circulating tumour cells in vivo. Nat. Biomed Eng. 2: 696-705. https://doi.org/10.1038/s41551-018-0257-3
  73. Cheng Z, Choi N, Wang R, Lee S, Moon KC, Yoon SY, et al. 2017. Simultaneous detection of dual prostate specific antigens using surface-enhanced raman scattering-based immunoassay for accurate diagnosis of prostate cancer. ACS Nano 11: 4926-4933. https://doi.org/10.1021/acsnano.7b01536
  74. Lee H, Hwang J, Park Y, Kwon D, Lee S, Kang I, et al. 2018. Immunomagnetic separation and size-based detection of Escherichia coli O157 at the meniscus of a membrane strip. RSC Adv. 8: 26266-26270. https://doi.org/10.1039/C8RA04739A
  75. Kim J, Park JY, Park YJ, Park SY, Lee MS, Koo C. 2020. A portable and high-sensitivity optical sensing system for detecting fluorescently labeled enterohaemorrhagic Escherichia coli Shiga toxin 2B-subunit. PLoS One 15: e0236043.
  76. Fang XX, Li HY, Fang P, Pan JZ, Fang Q. 2016. A handheld laser-induced fluorescence detector for multiple applications. Talanta 150: 135-141. https://doi.org/10.1016/j.talanta.2015.12.018
  77. Jung Y, Coronel-Aguilera C, Doh IJ, Min HJ, Lim T, Applegate BM, et al. 2020. Design and application of a portable luminometer for bioluminescence detection. Appl. Opt. 59: 801-810. https://doi.org/10.1364/AO.59.000801
  78. Yoo SM, Kim DK, Lee SY. 2015. Aptamer-functionalized localized surface plasmon resonance sensor for the multiplexed detection of different bacterial species. Talanta. 132: 112-117. https://doi.org/10.1016/j.talanta.2014.09.003
  79. Guo L, Zhou X, Kim DH. 2011. Facile fabrication of distance-tunable Au-nanorod chips for single-nanoparticle plasmonic biosensors. Biosens. Bioelectron. 26: 2246-2251. https://doi.org/10.1016/j.bios.2010.09.042
  80. Wang X, Li Y, Wang H, Fu Q, Peng J, Wang Y, et al. 2010. Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma. Biosens. Bioelectron. 26: 404-410. https://doi.org/10.1016/j.bios.2010.07.121
  81. Deng J, Song Y, Wang Y, Di J. 2010. Label-free optical biosensor based on localized surface plasmon resonance of twin-linked gold nanoparticles electrodeposited on ITO glass. Biosens. Bioelectron. 26: 615-619. https://doi.org/10.1016/j.bios.2010.07.014
  82. Jayabal S, Pandikumar A, Lim HN, Ramaraj R, Sun T, Huang NM. 2015. A gold nanorod-based localized surface plasmon resonance platform for the detection of environmentally toxic metal ions. Analyst. 140: 2540-2555. https://doi.org/10.1039/C4AN02330G
  83. Cheng XR, Hau BY, Endo T, Kerman K. 2014. Au nanoparticle-modified DNA sensor based on simultaneous electrochemical impedance spectroscopy and localized surface plasmon resonance. Biosens. Bioelectron. 53: 513-518. https://doi.org/10.1016/j.bios.2013.10.003
  84. Yeom SH, Han ME, Kang BH, Kim KJ, Yuan H, Eum NS, et al. 2013. Enhancement of the sensitivity of LSPR-based CRP immunosensors by Au nanoparticle antibody conjugation. Sensor Actuat B-Chem. 177: 376-383. https://doi.org/10.1016/j.snb.2012.10.099
  85. Bellapadrona G, Tesler AB, Grunstein D, Hossain LH, Kikkeri R, Seeberger PH, et al. 2012. Optimization of localized surface plasmon resonance transducers for studying carbohydrate-protein interactions. Anal. Chem. 84: 232-240. https://doi.org/10.1021/ac202363t
  86. Oh SY, Heo NS, Shukla S, Cho HJ, Vilian ATE, Kim J, et al. 2017. Development of gold nanoparticle-aptamer-based LSPR sensing chips for the rapid detection of Salmonella typhimurium in pork meat. Sci. Rep. 7: 10130.
  87. Wang B, Park B, Chen J, He X. 2020. Rapid and label-free immunosensing of Shiga toxin subtypes with surface plasmon resonance imaging. Toxins (Basel) 12: 280.
  88. Yanase Y, Hiragun T, Ishii K, Kawaguchi T, Yanase T, Kawai M, et al. 2014. Surface plasmon resonance for cell-based clinical diagnosis. Sensors (Basel) 14: 4948-4959. https://doi.org/10.3390/s140304948
  89. Eftimov T, Janik M, Koba M, Smietana M, Mikulic P, Bock W. 2020. Long-period gratings and microcavity in-line Mach zehnder interferometers as highly sensitive optical fiber platforms for bacteria sensing. Sensors (Basel) 20: 3772.
  90. Zhao Y, Zhao H, Lv RQ, Zhao J. 2019. Review of optical fiber Mach-Zehnder interferometers with micro-cavity fabricated by femtosecond laser and sensing applications. Opt. Laser Eng. 117: 7-20. https://doi.org/10.1016/j.optlaseng.2018.12.013
  91. Janik M, Mysliwiec AK, Koba M, Celebanska A, Bock WJ, Smietana M. 2017. Sensitivity pattern of femtosecond laser micromachined and plasma-processed in-fiber Mach-zehnder interferometers, as applied to small-scale refractive index sensing. Ieee Sens J. 17: 3316-3322. https://doi.org/10.1109/JSEN.2017.2695544
  92. Janik M, Brzozowska E, Czyszczon P, Celebanska A, Koba M, Gamian A, et al. 2021. Optical fiber aptasensor for label-free bacteria detection in small volumes. Sensor. Actuat B-Chem. 330: 129316.
  93. Sharma H, Mutharasan R. 2013. Review of biosensors for foodborne pathogens and toxins. Sensor. Actuat B-Chem. 183: 535-549. https://doi.org/10.1016/j.snb.2013.03.137
  94. Barsoukov E, Macdonald JR. 2005. Impedance Spectroscopy: Theory, Experiment, and Applications, pp. Second Ed. John Wiley & Sons, Inc: Hoboken, New Jersey.
  95. Corradini A, Cecchini M, Trevisani M. 2020. A Rapid Enzyme-linked immunomagnetic Electrochemical (ELIME) assay for the detection of Escherichia coli O26 in raw milk. Food Anal. Method. 13: 1366-1370. https://doi.org/10.1007/s12161-020-01758-8
  96. Quintela IA, Wu VCH. 2020. A sandwich-type bacteriophage-based amperometric biosensor for the detection of Shiga toxin-producing Escherichia coli serogroups in complex matrices. RSC Adv. 10: 35765-35775. https://doi.org/10.1039/D0RA06223E
  97. Wasiewska LA, Diaz FG, Shao H, Burgess CM, Duffy G, O'Riordan A. 2022. Highly sensitive electrochemical sensor for the detection of Shiga toxin-producing E. coli (STEC) using interdigitated micro-electrodes selectively modified with a chitosan-gold nanocomposite. Electrochimica Acta 426: 140748.
  98. Kaur H, Shorie M, Sabherwal P. 2020. Electrochemical aptasensor using boron-carbon nanorods decorated by nickel nanoparticles for detection of E. coli O157:H7. Mikrochim. Acta 187: 461.
  99. Rabti A, Zayani R, Meftah M, Salhi I, Raouafi N. 2020. Impedimetric DNA E-biosensor for multiplexed sensing of Escherichia coli and its virulent f17 strains. Mikrochim. Acta 187: 635.
  100. Ludwig JB, Shi X, Shridhar PB, Roberts EL, DebRoy C, Phebus RK, et al. 2020. Multiplex PCR assays for the detection of one hundred and thirty seven serogroups of Shiga Toxin-producing Escherichia coli associated with cattle. Front. Cell. Infect. Microbiol. 10: 378.
  101. Shan S, Huang YM, Huang ZH, Long ZE, Liu CW, Zhao XL, et al. 2021. Detection of stx1 and stx2 and subtyping of Shiga toxin-producing Escherichia coli using asymmetric PCR combined with lateral flow immunoassay. Food Control 126: 108051.
  102. Kim JH, Oh SW. 2019. Development of a filtration-based LAMP-LFA method as sensitive and rapid detection of E. coli O157:H7. J. Food Sci. Technol. 56: 2576-2583. https://doi.org/10.1007/s13197-019-03740-7
  103. Ravan H, Amandadi M, Sanadgol N. 2016. A highly specific and sensitive loop-mediated isothermal amplification method for the detection of Escherichia coli O157:H7. Microb. Pathog. 91: 161-165. https://doi.org/10.1016/j.micpath.2015.12.011
  104. Piepenburg O, Williams CH, Stemple DL, Armes NA. 2006. DNA detection using recombination proteins. PLoS Biol. 4: e204.
  105. Hu J, Huang R, Sun Y, Wei X, Wang Y, Jiang C, et al. 2019. Sensitive and rapid visual detection of Salmonella Typhimurium in milk based on recombinase polymerase amplification with lateral flow dipsticks. J. Microbiol. Methods 158: 25-32. https://doi.org/10.1016/j.mimet.2019.01.018
  106. Rani A, Ravindran VB, Surapaneni A, Shahsavari E, Haleyur N, Mantri N, et al. 2021. Evaluation and comparison of recombinase polymerase amplification coupled with lateral-flow bioassay for Escherichia coli O157:H7 detection using diifeerent genes. Sci. Rep. 11: 1881.
  107. Zeinhom MMA, Wang Y, Song Y, Zhu MJ, Lin Y, Du D. 2018. A portable smart-phone device for rapid and sensitive detection of E. coli O157:H7 in yoghurt and egg. Biosens. Bioelectron. 99: 479-485. https://doi.org/10.1016/j.bios.2017.08.002
  108. Park YM, Kim CH, Lee SJ, Lee MK. 2019. Multifunctional hand-held sensor using electronic components embedded in smartphones for quick PCR screening. Biosens Bioelectron. 141: 111415.
  109. Nguyen HV, Nguyen VD, Liu F, Seo TS. 2020. An integrated smartphone-based genetic analyzer for qualitative and quantitative pathogen detection. ACS Omega 5: 22208-22214. https://doi.org/10.1021/acsomega.0c02317
  110. Vallieres E, Saint-Jean M, Rallu F. 2013. Comparison of three different methods for detection of Shiga toxin-producing Escherichia coli in a tertiary pediatric care center. J. Clin. Microbiol. 51: 481-486. https://doi.org/10.1128/JCM.02219-12
  111. Shiga EA, Guth BEC, Piazza RMF, Luz D. 2020. Comparative analysis of rapid agglutination latex test using single-chain antibody fragments (scFv) versus the gold standard Vero cell assay for Shiga toxin (Stx) detection. J. Microbiol. Methods 175: 105965.
  112. Beutin L, Zimmermann S, Gleier K. 2002. Evaluation of the VTEC-Screen "Seiken" test for detection of different types of Shiga toxin (verotoxin)-producing Escherichia coli (STEC) in human stool samples. Diagn. Microbiol. Infect. Dis. 42: 1-8. https://doi.org/10.1016/S0732-8893(01)00325-X
  113. Singh P, Liu YJ, Bosileva JM, Mustapha A. 2019. Detection of Shiga toxin-producing Escherichia coli, stx(1), stx(2) and Salmonella by two high resolution melt curve multiplex real-time PCR. Food Control 96: 251-259. https://doi.org/10.1016/j.foodcont.2018.09.024
  114. Triplett OA, Xuan J, Foley S, Nayak R, Tolleson WH. 2019. Immunomagnetic capture of big six Shiga toxin-producing Escherichia coli Strains in Apple Juice with Detection by Multiplex Real-Time PCR eliminates interference from the food matrix. J. Food Prot. 82: 1512-1523. https://doi.org/10.4315/0362-028X.JFP-19-134
  115. Trinh TND, Lee NY. 2018. A rapid and eco-friendly isothermal amplification microdevice for multiplex detection of foodborne pathogens. Lab Chip. 18: 2369-2377. https://doi.org/10.1039/C8LC00424B
  116. Trinh KTL, Trinh TND, Lee NY. 2019. Fully integrated and slidable paper-embedded plastic microdevice for point-of-care testing of multiple foodborne pathogens. Biosens. Bioelectron. 135: 120-128. https://doi.org/10.1016/j.bios.2019.04.011
  117. Shin JH, Hong J, Go H, Park J, Kong M, Ryu S, et al. 2018. Multiplexed detection of foodborne pathogens from contaminated lettuces using a Handheld multistep lateral flow assay device. J. Agric. Food Chem. 66: 290-297. https://doi.org/10.1021/acs.jafc.7b03582
  118. Hossain SM, Ozimok C, Sicard C, Aguirre SD, Ali MM, Li Y, et al. 2012. Multiplexed paper test strip for quantitative bacterial detection. Anal. Bioanal. Chem. 403: 1567-1576. https://doi.org/10.1007/s00216-012-5975-x
  119. Choi JR, Yong KW, Tang RH, Gong Y, Wen T, Li F, et al. 2017. Advances and challenges of fully integrated paper-based point-of-care nucleic acid testing. Trac-Trend Anal. Chem. 93: 37-50. https://doi.org/10.1016/j.trac.2017.05.007
  120. Burnham S, Hu J, Anany H, Brovko L, Deiss F, Derda R, et al. 2014. Towards rapid on-site phage-mediated detection of generic Escherichia coli in water using luminescent and visual readout. Anal. Bioanal. Chem. 406: 5685-5693. https://doi.org/10.1007/s00216-014-7985-3
  121. Ma S, Tang Y, Liu J, Wu J. 2014. Visible paper chip immunoassay for rapid determination of bacteria in water distribution system. Talanta 120: 135-140. https://doi.org/10.1016/j.talanta.2013.12.007
  122. Gunda NSK, Dasgupta S, Mitra SK. 2017. DipTest: A litmus test for E. coli detection in water. PLoS One 12: e0183234.
  123. Jokerst JC, Adkins JA, Bisha B, Mentele MM, Goodridge LD, Henry CS. 2012. Development of a paper-based analytical device for colorimetric detection of select foodborne pathogens. Anal. Chem. 84: 2900-2907. https://doi.org/10.1021/ac203466y
  124. Park TS, Yoon JY. 2015. Smartphone detection of Escherichia coli from field water samples on paper microfluidics. Ieee Sens J. 15: 1902-1907. https://doi.org/10.1109/JSEN.2014.2367039
  125. Altintas Z, Akgun M, Kokturk G, Uludag Y. 2018. A fully automated microfluidic-based electrochemical sensor for real-time bacteria detection. Biosens. Bioelectron. 100: 541-548. https://doi.org/10.1016/j.bios.2017.09.046
  126. Kim M, Jung T, Kim Y, Lee C, Woo K, Seol JH, et al. 2015. A microfluidic device for label-free detection of Escherichia coli in drinking water using positive dielectrophoretic focusing, capturing, and impedance measurement. Biosens. Bioelectron. 74: 1011-1015. https://doi.org/10.1016/j.bios.2015.07.059
  127. Tian F, Lyu J, Shi JY, Tan F, Yang M. 2016. A polymeric microfluidic device integrated with nanoporous alumina membranes for simultaneous detection of multiple foodborne pathogens. Sensor. Actuat. B-Chem. 225: 312-318. https://doi.org/10.1016/j.snb.2015.11.059