DOI QR코드

DOI QR Code

Cut-Through versus Cut-Out: No Easy Way to Predict How Single Lag Screw Design Cephalomedullary Nails Used for Intertrochanteric Hip Fractures Will Fail?

  • Garrett W. Esper (Division of Orthopedic Trauma Surgery, Department of Orthopedic Surgery, NYU Langone Health, NYU Langone Orthopedic Hospital) ;
  • Nina D. Fisher (Division of Orthopedic Trauma Surgery, Department of Orthopedic Surgery, NYU Langone Health, NYU Langone Orthopedic Hospital) ;
  • Utkarsh Anil (Division of Orthopedic Trauma Surgery, Department of Orthopedic Surgery, NYU Langone Health, NYU Langone Orthopedic Hospital) ;
  • Abhishek Ganta (Division of Orthopedic Trauma Surgery, Department of Orthopedic Surgery, NYU Langone Health, NYU Langone Orthopedic Hospital) ;
  • Sanjit R. Konda (Division of Orthopedic Trauma Surgery, Department of Orthopedic Surgery, NYU Langone Health, NYU Langone Orthopedic Hospital) ;
  • Kenneth A. Egol (Division of Orthopedic Trauma Surgery, Department of Orthopedic Surgery, NYU Langone Health, NYU Langone Orthopedic Hospital)
  • Received : 2023.01.09
  • Accepted : 2023.03.11
  • Published : 2023.09.30

Abstract

Purpose: This study aims to compare patients in whom fixation failure occurred via cut-out (CO) or cut-through (CT) in order to determine patient factors and radiographic parameters that may be predictive of each mechanism. Materials and Methods: This retrospective cohort study includes 18 patients with intertrochanteric (IT) hip fractures (AO/OTA classification 31A1.3) who underwent treatment using a single lag screw design intramedullary nail in whom fixation failure occurred within one year. All patients were reviewed for demographics and radiographic parameters including tip-to-apex distance (TAD), posteromedial calcar continuity, neck-shaft angle, lateral wall thickness, and others. Patients were grouped into cohorts based on the mechanism of failure, either lag screw CO or CT, and a comparison was performed. Results: No differences in demographics, injury details, fracture classifications, or radiographic parameters were observed between CO/CT cohorts. Of note, a similar rate of post-reduction TAD>25 mm (P=0.936) was observed between groups. A higher rate of DEXA (dual energy X-ray absorptiometry) confirmed osteoporosis (25.0% vs. 60.0%) was observed in the CT group, but without significance. Conclusion: The mechanism of CT failure during intramedullary nail fixation of an IT fracture did not show an association with clinical data including patient demographics, reduction accuracy, or radiographic parameters. As reported in previous biomechanical studies, the main predictive factor for patients in whom early failure might occur via the CT effect mechanism may be related to bone quality; however, conduct of larger studies will be required in order to determine whether there is a difference in bone quality.

Keywords

References

  1. Ahn J, Bernstein J. Fractures in brief: intertrochanteric hip fractures. Clin Orthop Relat Res. 2010;468:1450-2. https://doi.org/10.1007/s11999-010-1263-2 
  2. Lee SH, Chen IJ, Li YH, Fan Chiang CY, Chang CH, Hsieh PH. Incidence of second hip fractures and associated mortality in Taiwan: a nationwide population-based study of 95,484 patients during 2006-2010. Acta Orthop Traumatol Turc. 2016;50:437-42. https://doi.org/10.1016/j.aott.2016.06.008 
  3. Yu X, Wang H, Duan X, Liu M, Xiang Z. Intramedullary versus extramedullary internal fixation for unstable intertrochanteric fracture, a meta-analysis. Acta Orthop Traumatol Turc. 2018;52:299-307. https://doi.org/10.1016/j.aott.2018.02.009 
  4. Madsen JE, Naess L, Aune AK, Alho A, Ekeland A, Stromsoe K. Dynamic hip screw with trochanteric stabilizing plate in the treatment of unstable proximal femoral fractures: a comparative study with the Gamma nail and compression hip screw. J Orthop Trauma. 1998;12:241-8. https://doi.org/10.1097/00005131-199805000-00005 
  5. Socci AR, Casemyr NE, Leslie MP, Baumgaertner MR. Implant options for the treatment of intertrochanteric fractures of the hip: rationale, evidence, and recommendations. Bone Joint J. 2017;99-B:128-33. https://doi.org/10.1302/0301-620X.99B1.BJJ2016-0134.R1 
  6. Cheung JP, Chan CF. Cutout of proximal femoral nail antirotation resulting from blocking of the gliding mechanism during fracture collapse. J Orthop Trauma. 2011;25:e51-5. https://doi.org/10.1097/BOT.0b013e3181f6b95f 
  7. Flint JH, Sanchez-Navarro CF, Buckwalter JA, Marsh JL. Intrapelvic migration of a gamma nail lag screw: review of the possible mechanisms. Orthopedics. 2010;33:266-70. https://doi.org/10.3928/01477447-20100225-19 
  8. Lal H, Sharma DK, Mittal D. Intrapelvic migration of hip lag screw of proximal femoral nail-sequele to a paradoxical reverse Z effect and their critical analysis. J Clin Orthop Trauma. 2012;3:48-53. https://doi.org/10.1016/j.jcot.2012.02.002 
  9. Liu W, Zhou D, Liu F, Weaver MJ, Vrahas MS. Mechanical complications of intertrochanteric hip fractures treated with trochanteric femoral nails. J Trauma Acute Care Surg. 2013;75:304-10. https://doi.org/10.1097/TA.0b013e31829a2c43 
  10. Lorich DG, Geller DS, Nielson JH. Osteoporotic pertrochanteric hip fractures: management and current controversies. Instr Course Lect. 2004;53:441-54. 
  11. Smeets SJM, Kuijt G, van Eerten PV. Z-effect after intramedullary nailing systems for trochanteric femur fractures. Chin J Traumatol. 2017;20:333-8. https://doi.org/10.1016/j.cjtee.2017.05.002 
  12. Takigami I, Ohnishi K, Ito Y, et al. Acetabular perforation after medial migration of the helical blade through the femoral head after treatment of an unstable trochanteric fracture with proximal femoral nail antirotation (PFNA): a case report. J Orthop Trauma. 2011;25:e86-9. https://doi.org/10.1097/BOT.0b013e3181fae12e 
  13. Konda SR, Seymour R, Manoli A, Gales J, Karunakar MA; Carolinas Trauma Network Research Group. Development of a middle-age and geriatric trauma mortality risk score a tool to guide palliative care consultations. Bull Hosp Jt Dis (2013). 2016;74:298-305. 
  14. Esper GW, Meltzer-Bruhn AT, Ganta A, Egol KA, Konda SR. Seasonality affects elderly hip fracture mortality risk during the COVID-19 pandemic. Cureus. 2022;14:e26530. https://doi.org/10.7759/cureus.26530 
  15. Meltzer-Bruhn AT, Esper GW, Herbosa CG, Ganta A, Egol KA, Konda SR. The role of smoking and body mass index in mortality risk assessment for geriatric hip fracture patients. Cureus. 2022;14:e26666. https://doi.org/10.7759/cureus.26666 
  16. Konda SR, Parola R, Perskin C, Egol KA. ASA physical status classification improves predictive ability of a validated trauma risk score. Geriatr Orthop Surg Rehabil. 2021;12:2151459321989534. https://doi.org/10.1177/2151459321989534 
  17. Kanis JA, Johnell O, Oden A, Johansson H, McCloskey E. FRAX and the assessment of fracture probability in men and women from the UK. Osteoporos Int. 2008;19:385-97. https://doi.org/10.1007/s00198-007-0543-5 
  18. Koval KJ, Oh CK, Egol KA. Does a traction-internal rotation radiograph help to better evaluate fractures of the proximal femur? Bull NYU Hosp Jt Dis. 2008;66:102-6. 
  19. Meinberg EG, Agel J, Roberts CS, Karam MD, Kellam JF. Fracture and dislocation classification compendium-2018. J Orthop Trauma. 2018;32 Suppl 1:S1-170. https://doi.org/10.1097/BOT.0000000000001063 
  20. Baumgaertner MR, Curtin SL, Lindskog DM, Keggi JM. The value of the tip-apex distance in predicting failure of fixation of peritrochanteric fractures of the hip. J Bone Joint Surg Am. 1995;77:1058-64. https://doi.org/10.2106/00004623-199507000-00012 
  21. Palm H, Jacobsen S, Sonne-Holm S, Gebuhr P; Hip Fracture Study Group. Integrity of the lateral femoral wall in intertrochanteric hip fractures: an important predictor of a reoperation. J Bone Joint Surg Am. 2007;89:470-5. https://doi.org/10.2106/JBJS.F.00679 
  22. Hsu CE, Shih CM, Wang CC, Huang KC. Lateral femoral wall thickness. A reliable predictor of post-operative lateral wall fracture in intertrochanteric fractures. Bone Joint J. 2013;95-B:1134-8. https://doi.org/10.1302/0301-620X.95B8.31495 
  23. Strauss EJ, Kummer FJ, Koval KJ, Egol KA. The "Z-effect" phenomenon defined: a laboratory study. J Orthop Res. 2007;25:1568-73. https://doi.org/10.1002/jor.20457 
  24. Baumgaertner MR, Solberg BD. Awareness of tip-apex distance reduces failure of fixation of trochanteric fractures of the hip. J Bone Joint Surg Br. 1997;79:969-71. https://doi.org/10.1302/0301-620x.79b6.7949 
  25. Kuzyk PR, Zdero R, Shah S, Olsen M, Waddell JP, Schemitsch EH. Femoral head lag screw position for cephalomedullary nails: a biomechanical analysis. J Orthop Trauma. 2012;26:414-21. https://doi.org/10.1097/BOT.0b013e318229acca 
  26. Quental C, Vasconcelos S, Folgado J, Guerra-Pinto F. Influence of the PFNA screw position on the risk of cut-out in an unstable intertrochanteric fracture: a computational analysis. Med Eng Phys. 2021;97:70-6. https://doi.org/10.1016/j.medengphy.2021.10.001 
  27. John B, Sharma A, Mahajan A, Pandey R. Tip-apex distance and other predictors of outcome in cephalomedullary nailing of unstable trochanteric fractures. J Clin Orthop Trauma. 2019;10(Suppl 1):S88-94. https://doi.org/10.1016/j.jcot.2019.04.018 Erratum in: J Clin Orthop Trauma. 2020;11:1169-71. https://doi.org/10.1016/j.jcot.2020.09.032 Erratum in: J Clin Orthop Trauma. 2020;11:1177. https://doi.org/10.1016/j.jcot.2020.10.025 Erratum in: J Clin Orthop Trauma. 2020;11:1172-4. https://doi.org/10.1016/j.jcot.2020.10.044 Erratum in: J Clin Orthop Trauma. 2021;21:101557. https://doi.org/10.1016/j.jcot.2021.101557 
  28. Stern LC, Gorczyca JT, Kates S, Ketz J, Soles G, Humphrey CA. Radiographic review of helical blade versus lag screw fixation for cephalomedullary nailing of low-energy peritrochanteric femur fractures: there is a difference in cutout. J Orthop Trauma. 2017;31:305-10. https://doi.org/10.1097/BOT.0000000000000853 
  29. Turgut A, Kalenderer O, KarapInar L, KumbaracI M, Akkan HA, Agus H. Which factor is most important for occurrence of cutout complications in patients treated with proximal femoral nail antirotation? Retrospective analysis of 298 patients. Arch Orthop Trauma Surg. 2016;136:623-30. https://doi.org/10.1007/s00402-016-2410-3