DOI QR코드

DOI QR Code

Differentiation and Characterization of Cystic Fibrosis Transmembrane Conductance Regulator Knockout Human Pluripotent Stem Cells into Salivary Gland Epithelial Progenitors

  • Shuang Yan (Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology and Central Laboratory, Peking University) ;
  • Yifei Zhang (Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology and Central Laboratory, Peking University) ;
  • Siqi Zhang (Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology and Central Laboratory, Peking University) ;
  • Shicheng Wei (Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology and Central Laboratory, Peking University)
  • 투고 : 2023.03.24
  • 심사 : 2023.06.24
  • 발행 : 2023.11.30

초록

The differentiation of pluripotent stem cells has been used to study disease mechanisms and development. We previously described a method for differentiating human pluripotent stem cells (hPSCs) into salivary gland epithelial progenitors (SGEPs). Here, cystic fibrosis transmembrane conductance regulator (CFTR) knockout hPSCs were differentiated into SGEPs derived from CFTR knockout hESCs (CF-SGEPs) using the same protocol to investigate whether the hPSC-derived SGEPs can model the characteristics of CF. CF-a disease that affects salivary gland (SG) function-is caused by mutations of the CFTR gene. Firstly, we successfully generated CFTR knockout hPSCs with reduced CFTR protein expression using the CRISPR-Cas9 system. After 16 days of differentiation, the protein expression of CFTR decreased in SGEPs derived from CFTR knockout hESCs (CF-SGEPs). RNA-Seq revealed that multiple genes modulating SG development and function were down-regulated, and positive regulators of inflammation were up-regulated in CF-SGEPs, correlating with the salivary phenotype of CF patients. These results demonstrated that CFTR suppression disrupted the differentiation of hPSC-derived SGEPs, which modeled the SG development of CF patients. In summary, this study not only proved that the hPSC-derived SGEPs could serve as manipulable and readily accessible cell models for the study of SG developmental diseases but also opened up new avenues for the study of the CF mechanism.

키워드

과제정보

We thank National Center for Protein Sciences at Peking University in Beijing, China, for assistance with providing Roche qPCR equipment and Nikon A1R confocal microscopy photography.

참고문헌

  1. Kolagar TA, Farzaneh M, Nikkar N, Khoshnam SE. Human pluripotent stem cells in neurodegenerative diseases: potentials, advances and limitations. Curr Stem Cell Res Ther 2020;15:102-110
  2. Liu G, David BT, Trawczynski M, Fessler RG. Advances in pluripotent stem cells: history, mechanisms, technologies, and applications. Stem Cell Rev Rep 2020;16:3-32
  3. Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly. Nature 2013;501:373-379
  4. Drakhlis L, Devadas SB, Zweigerdt R. Generation of heart-forming organoids from human pluripotent stem cells. Nat Protoc 2021;16:5652-5672
  5. McCracken KW, Cata EM, Crawford CM, et al. Modelling human development and disease in pluripotent stem-cell-derived gastric organoids. Nature 2014;516:400-404
  6. Spence JR, Mayhew CN, Rankin SA, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 2011;470:105-109
  7. Tam WL, Freitas Mendes L, Chen X, et al. Human pluripotent stem cell-derived cartilaginous organoids promote scaffold-free healing of critical size long bone defects. Stem Cell Res Ther 2021;12:513
  8. Petersen MBK, Goncalves CAC, Kim YH, Grapin-Botton A. Recapitulating and deciphering human pancreas development from human pluripotent stem cells in a dish. Curr Top Dev Biol 2018;129:143-190
  9. Heslop JA, Duncan SA. The use of human pluripotent stem cells for modeling liver development and disease. Hepatology 2019;69:1306-1316
  10. Emmerson E, Knox SM. Salivary gland stem cells: a review of development, regeneration and cancer. Genesis 2018;56:e23211
  11. Holmberg KV, Hoffman MP. Anatomy, biogenesis and regeneration of salivary glands. Monogr Oral Sci 2014;24:1-13
  12. Tanaka J, Senpuku H, Ogawa M, et al. Human induced pluripotent stem cell-derived salivary gland organoids model SARS-CoV-2 infection and replication. Nat Cell Biol 2022;24:1595-1605
  13. Zhang S, Sui Y, Zhang Y, et al. Derivation of human salivary epithelial progenitors from pluripotent stem cells via activation of RA and Wnt signaling. Stem Cell Rev Rep 2023;19:430-442
  14. Ooi CY, Durie PR. Cystic fibrosis from the gastroenterologist's perspective. Nat Rev Gastroenterol Hepatol 2016;13:175-185
  15. Sermet-Gaudelus I, Vallee B, Urbin I, et al. Normal function of the cystic fibrosis conductance regulator protein can be associated with homozygous (Delta)F508 mutation. Pediatr Res 2002;52:628-635
  16. Trapnell BC, Chu CS, Paakko PK, et al. Expression of the cystic fibrosis transmembrane conductance regulator gene in the respiratory tract of normal individuals and individuals with cystic fibrosis. Proc Natl Acad Sci U S A 1991;88:6565-6569
  17. Barbero GJ, Sibinga MS. Enlargement of the submaxillary salivary glands in cystic fibrosis. Pediatrics 1962;29:788-793
  18. da Silva Modesto KB, de Godoi Simoes JB, de Souza AF, et al. Salivary flow rate and biochemical composition analysis in stimulated whole saliva of children with cystic fibrosis. Arch Oral Biol 2015;60:1650-1654
  19. El Khoury J, Haber E, Nasr M, Hokayem N. Botulinum neurotoxin A for parotid enlargement in cystic fibrosis: the first case report. J Oral Maxillofac Surg 2016;74:1771-1773
  20. Nedvetsky PI, Emmerson E, Finley JK, et al. Parasympathetic innervation regulates tubulogenesis in the developing salivary gland. Dev Cell 2014;30:449-462
  21. Ran FA, Hsu PD, Wright J, Agarwala V, Scott DA, Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat Protoc 2013;8:2281-2308
  22. Liu Z, Guo J, Wang Y, et al. CFTR-β-catenin interaction regulates mouse embryonic stem cell differentiation and embryonic development. Cell Death Differ 2017;24:98-110
  23. Nanduri LS, Baanstra M, Faber H, et al. Purification and ex vivo expansion of fully functional salivary gland stem cells. Stem Cell Reports 2014;3:957-964
  24. Kadoya Y, Nomizu M, Sorokin LM, Yamashina S, Yamada Y. Laminin alpha1 chain G domain peptide, RKRLQVQLSIRT, inhibits epithelial branching morphogenesis of cultured embryonic mouse submandibular gland. Dev Dyn 1998;212:394-402
  25. Yang TL, Hsiao YC. Chitosan facilitates structure formation of the salivary gland by regulating the basement membrane components. Biomaterials 2015;66:29-40
  26. Nichols DP, Chmiel JF. Inflammation and its genesis in cystic fibrosis. Pediatr Pulmonol 2015;50 Suppl 40:S39-S56
  27. Sun H, Wang Y, Zhang J, et al. CFTR mutation enhances Dishevelled degradation and results in impairment of Wntdependent hematopoiesis. Cell Death Dis 2018;9:275
  28. Dumortier C, Danopoulos S, Velard F, Al Alam D. Bone cells differentiation: how CFTR mutations may rule the game of stem cells commitment? Front Cell Dev Biol 2021;9:611921
  29. Rowe SM, Miller S, Sorscher EJ. Cystic fibrosis. N Engl J Med 2005;352:1992-2001
  30. Meng X, Clews J, Kargas V, Wang X, Ford RC. The cystic fibrosis transmembrane conductance regulator (CFTR) and its stability. Cell Mol Life Sci 2017;74:23-38
  31. Zinn VZ, Khatri A, Mednieks MI, Hand AR. Localization of cystic fibrosis transmembrane conductance regulator signaling complexes in human salivary gland striated duct cells. Eur J Oral Sci 2015;123:140-148
  32. Alshahran SA, Almufareh NA, Almarshady B, Alotaibi RK, Al-Qahtani WS. Effects of consuming Catha edulis Forsk (khat) on the gene manifestation of CHRM1 and CHRM3 in relation to salivary glands, saliva flow rates, pH and dental caries in Yemeni consumers. Open Dent J 2020;14:482-488
  33. Jeong J, Baek H, Kim YJ, et al. Human salivary gland stem cells ameliorate hyposalivation of radiation-damaged rat salivary glands. Exp Mol Med 2013;45:e58
  34. Fonseca I, Moura Nunes JF, Soares J. Expression of CD44 isoforms in normal salivary gland tissue: an immunohistochemical and ultrastructural study. Histochem Cell Biol 2000;114:483-488
  35. Gonzalez-Begne M, Nakamoto T, Nguyen HV, Stewart AK, Alper SL, Melvin JE. Enhanced formation of a HCO3-transport metabolon in exocrine cells of Nhe1-/- mice. J Biol Chem 2007;282:35125-35132
  36. Shen ZJ, Han YC, Nie MW, Xiang RL, Xie HZ. Analyses of circRNA and mRNA profiles in the submandibular gland in hypertension. Genomics 2021;113(1 Pt 1):57-65
  37. Zou DP, Chen YM, Zhang LZ, et al. SFRP5 inhibits melanin synthesis of melanocytes in vitiligo by suppressing the Wnt/β-catenin signaling. Genes Dis 2020;8:677-688
  38. Harutyunyan SA, Simonyan KG, Mkrtchyan NM, Kashirskaya NY, Libik M, Macek М. [Sialadenitis in cystic fibrosis: case report]. Doctor.Ru 2020;19:66-68 Russian
  39. Bachvarov DR, Hess JF, Menke JG, Larrivee JF, Marceau F. Structure and genomic organization of the human B1 receptor gene for kinins (BDKRB1). Genomics 1996;33:374-381
  40. Lv J, Liu J, Chao G, Zhang S. PARs in the inflammation-cancer transformation of CRC. Clin Transl Oncol 2023;25:1242-1251