DOI QR코드

DOI QR Code

Fermented Aloe arborescens Miller Leaf Extract Suppresses Acute Alcoholic Liver Injury via Antioxidant and Anti-Inflammatory Effects in C57BL/6J Mice

  • Received : 2022.11.23
  • Accepted : 2023.01.12
  • Published : 2023.04.28

Abstract

This study confirmed the change in functional composition and alcohol-induced acute liver injury in Aloe arborescens after fermentation. An acute liver injury was induced by administration of ethanol (3 g/kg/day) to C57BL/6J mice for 5 days. A fermented A. arborescens Miller leaf (FAAL) extract was orally administered 30 minutes before ethanol treatment. After fermentation, the emodin content was approximately 13 times higher than that of the raw material. FAAL extract significantly attenuated ethanol-induced aspartate aminotransferase, alanine aminotransferase, and triglyceride increases in serum and liver tissue. Histological analysis revealed that FAAL extract inhibits inflammatory cell infiltration and fat accumulation in liver tissues. The cytochrome P450 2E1, superoxide dismutase, and glutathione (GSH), which involved in alcohol-induced oxidative stress, were effectively regulated by FAAL extract in serum and liver tissues, except for GSH. FAAL also maintained the antioxidant defense system by upregulating heme oxygenase 1 and nuclear factor erythroid 2-related factor 2 protein expression. In addition, FAAL extract inhibited the decrease in alcohol dehydrogenase and aldehyde dehydrogenase activity, which promoted alcohol metabolism and prevented the activation of inflammatory response. Our results suggest that FAAL could be used as a potential therapeutic agent for ethanol-induced acute liver injury.

Keywords

Acknowledgement

This research was financially supported by the Ministry of Trade, Industry, and Energy (MOTIE), Korea, under the "Infrastructure program for smart specialization" supervised by the Korea Institute for Advancement of Technology (KIAT) (P0017238).

References

  1. Gao B, Bataller R. 2011. Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141: 1572-1585. https://doi.org/10.1053/j.gastro.2011.09.002
  2. Louvet A, Mathurin P. 2015. Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat. Rev. Gastroenterol. Hepatol. 12: 231-242. https://doi.org/10.1038/nrgastro.2015.35
  3. Nagy LE. 2004. Molecular aspects of alcohol metabolism: transcription factors involved in early ethanol-induced liver injury. Ann. Rev. Nutr. 24: 55.
  4. Higuchi H, Gores GJ. 2003. Mechanisms of liver injury: an overview. Curr. Mol. Med. 3: 483-490. https://doi.org/10.2174/1566524033479528
  5. Malhi H, Gores GJ. 2008. Cellular and molecular mechanisms of liver injury. Gastroenterology 134: 1641-1654. https://doi.org/10.1053/j.gastro.2008.03.002
  6. Lu Y, Cederbaum AI. 2008. CYP2E1 and oxidative liver injury by alcohol. Free Radic. Biol. Med. 44: 723-738. https://doi.org/10.1016/j.freeradbiomed.2007.11.004
  7. Nordmann R, Ribiere C, Rouach H. 1992. Implication of free radical mechanisms in ethanol-induced cellular injury. Free Radic. Biol Med. 12: 219-240. https://doi.org/10.1016/0891-5849(92)90030-K
  8. Lim JW, Kim H, Kim KH. 2001. Nuclear factor-κB regulates cyclooxygenase-2 expression and cell proliferation in human gastric cancer cells. Lab. Investig. 81: 349-360. https://doi.org/10.1038/labinvest.3780243
  9. Kawaratani H, Tsujimoto T, Douhara A, Takaya H, Moriya K, Namisaki T, et al. 2013. The effect of inflammatory cytokines in alcoholic liver disease. Mediators Inflamm. 2013: 495156.
  10. Li Z, Lian Y, Wei R, Jin L, Cao H, Zhao T, et al. 2020. Effects of taraxasterol against ethanol and high-fat diet-induced liver injury by regulating TLR4/MyD88/NF-κB and Nrf2/HO-1 signaling pathways. Life Sci. 262: 118546.
  11. Bastian P, Fal AM, Jambor J, Michalak A, Noster B, Sievers H, et al. 2013. Candelabra Aloe (Aloe arborescens) in the therapy and prophylaxis of upper respiratory tract infections: Traditional use and recent research results. Wien. Med. Wochenschr. 163: 73-79. https://doi.org/10.1007/s10354-012-0171-3
  12. Anibarro-Ortega M, Pinela J, Barros L, Ciric A, Silva SP, Coelho E, et al. 2019. Compositional features and bioactive properties of Aloe vera leaf (fillet, mucilage, and rind) and flower. Antioxidants 8: 444.
  13. Solek P, Majchrowicz L, Koziorowski M. 2018. Aloe arborescens juice prevents EMF-induced oxidative stress and thus protects from pathophysiology in the male reproductive system in vitro. Environ. Res. 166: 141-149. https://doi.org/10.1016/j.envres.2018.05.035
  14. Suboj P, Babykutty S, Gopi DRV, Nair RS, Srinivas P, Gopala S. 2012. Aloe emodin inhibits colon cancer cell migration/angiogenesis by downregulating MMP-2/9, RhoB and VEGF via reduced DNA binding activity of NF-κB. Eur. J. Pharm. Sci. 45: 581-591. https://doi.org/10.1016/j.ejps.2011.12.012
  15. Tabolacci C, Cordella M, Turcano L, Rossi S, Lentini A, Mariotti S, et al. 2015. Aloe-emodin exerts a potent anticancer and immunomodulatory activity on BRAF-mutated human melanoma cells. Eur. J. Pharmacol. 762: 283-292. https://doi.org/10.1016/j.ejphar.2015.05.057
  16. Dong X, Zeng Y, Liu Y, You L, Yin X, Fu J, et al. 2020. Aloe-emodin: a review of its pharmacology, toxicity, and pharmacokinetics. Phytother. Res. 34: 270-281. https://doi.org/10.1002/ptr.6532
  17. Ahmad A, Banat F, Taher H. 2020. A review on the lactic acid fermentation from low-cost renewable materials: Recent developments and challenges. Environ. Technol. Innov. 20: 101138.
  18. Tornero-Martinez A, Cruz-Ortiz R, Jaramillo-Flores ME, Osorio-Diaz P, Avila-Reyes SV, Alvarado-Jasso GM, et al. 2019. In vitro fermentation of polysaccharides from Aloe vera and the evaluation of antioxidant activity and production of short chain fatty acids. Molecules 24: 3605.
  19. Lim BL. 2008. Protective effects of fermented Aloe vera on carbon tetrachloride-induced hepatotoxicity in Sprague-dawley rats. Microbiol. Biotechnol. Lett. 36: 240-245.
  20. Jeong MS, Park S, Han EJ, Park SY, Kim MJ, Jung K, et al. 2020. Pinus thunbergii PARL leaf protects against alcohol-induced liver disease by enhancing antioxidant defense mechanism in BALB/c mice. J. Funct. Foods 73: 104116.
  21. Akaberi M, Sobhani Z, Javadi B, Sahebkar A, Emami SA. 2016. Therapeutic effects of Aloe spp. in traditional and modern medicine: A review. Biomed. Pharmacother. 84: 759-772. https://doi.org/10.1016/j.biopha.2016.09.096
  22. Alves-Bezerra M, Cohen DE. 2017. Triglyceride metabolism in the liver. Compr. Physiol. 8: 1-8. https://doi.org/10.1002/cphy.c170012
  23. Cui Y, Ye Q, Wang H, Li Y, Yao W, Qian H. 2014. Hepatoprotective potential of Aloe vera polysaccharides against chronic alcohol-induced hepatotoxicity in mice. J. Sci. Food Agric. 94: 1764-1771. https://doi.org/10.1002/jsfa.6489
  24. Loboda A, Damulewicz M, Pyza E, Jozkowicz A, Dulak J. 2016. Role of Nrf2/HO-1 system in development, oxidative stress response and diseases: an evolutionarily conserved mechanism. Cell. Mol. Life Sci. 73: 3221-3247. https://doi.org/10.1007/s00018-016-2223-0
  25. Bondy SC. 1992. Ethanol toxicity and oxidative stress. Toxicol. Lett. 63: 231-241. https://doi.org/10.1016/0378-4274(92)90086-Y
  26. Kaspar JW, Niture SK, Jaiswal AK. 2009. Nrf2: INrf2 (Keap1) signaling in oxidative stress. Free Radic. Biol. Med. 47: 1304-1309. https://doi.org/10.1016/j.freeradbiomed.2009.07.035
  27. Liu C, Hua H, Zhu H, Cheng Y, Guo Y, Yao W, et al. 2021. Aloe polysaccharides ameliorate acute colitis in mice via Nrf2/HO-1 signaling pathway and short-chain fatty acids metabolism. Int. J. Biol. Macromol. 185: 804-812. https://doi.org/10.1016/j.ijbiomac.2021.07.007
  28. Kshirsagar AD, Panchal PV, Harle UN, Nanda RK, Shaikh HM. 2014. Anti-inflammatory and antiarthritic activity of anthraquinone derivatives in rodents. Int. J. Inflamm. 2014: 690596.
  29. Uesugi T, Froh M, Arteel GE, Bradford BU, Thurman RG. 2001. Toll-like receptor 4 is involved in the mechanism of early alcohol-induced liver injury in mice. Hepatology 34: 101-108. https://doi.org/10.1016/S0168-8278(01)80362-7
  30. Chen Y, Feng B, Yuan Y, Hu J, Zhao W, Jiang H, et al. 2020. Aloe emodin reduces cardiac inflammation induced by a high-fat diet through the TLR4 signaling pathway. Mediators Inflamm. 2020: 6318520.