Acknowledgement
This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through the Animal Disease Management Technology Development Program, funded by the Ministry of Agriculture, Food and Rural Affairs (122001021SB01061382116530000).
References
- Dadar M, Tiwari R, Sharun K, Dhama K. 2021. Importance of brucellosis control programs of livestock on the improvement of one health. Vet. Q 41: 137-151. https://doi.org/10.1080/01652176.2021.1894501
- Oliveira SC. 2021. Host immune responses and pathogenesis to Brucella spp. infection. Pathogens 10: 288.
- Jamil T, Melzer F, Njeru J, El-Adawy H, Neubauer H, Wareth G. 2017. Brucella abortus: current research and future trends. Curr. Clin. Microbiol. Rep. 4: 1-10. https://doi.org/10.1007/s40588-017-0052-z
- Laine CG, Scott HM, Arenas-Gamboa AM. 2022. Human brucellosis: widespread information deficiency hinders an understanding of global disease frequency. PLoS Negl. Trop. Dis. 16: e0010404.
- Christopher S, Umapathy BL, Ravikumar KL. 2010. Brucellosis: review on the recent trends in pathogenicity and laboratory diagnosis. J. Lab. Physicians 2: 55-60. https://doi.org/10.4103/0974-2727.72149
- von Bargen K, Gorvel JP, Salcedo SP. 2012. Internal affairs: investigating the Brucella intracellular lifestyle. FEMS Microbiol. Rev. 36: 533-562. https://doi.org/10.1111/j.1574-6976.2012.00334.x
- Karponi G, Kritas SK, Papadopoulou G, Akrioti EK, Papanikolaou E, Petridou E. 2019. Development of a CRISPR/Cas9 system against ruminant animal brucellosis. BMC Vet. Res. 15: 422.
- Ryu S, Soares Magalhaes RJ, Chun BC. 2019. The impact of expanded brucellosis surveillance in beef cattle on human brucellosis in Korea: an interrupted time-series analysis. BMC Infect. Dis. 19: 201.
- Yoon H, Moon OK, Lee SH, Lee WC, Her M, Jeong W, et al. 2014. Epidemiology of brucellosis among cattle in Korea from 2001 to 2011. J. Vet. Sci. 15: 537-543. https://doi.org/10.4142/jvs.2014.15.4.537
- Solis Garcia del Pozo J, Solera J. 2012. Systematic review and meta-analysis of randomized clinical trials in the treatment of human brucellosis. PLoS One 7: e32090.
- Lalsiamthara J, Lee JH. 2017. Development and trial of vaccines against Brucella. J. Vet. Sci. 18: 281-290. https://doi.org/10.4142/jvs.2017.18.S1.281
- Opal SM, Ellis JL, Suri V, Freudenberg JM, Vlasuk GP, Li Y, et al. 2016. Pharmacological SIRT1 activation improves mortality and markedly alters transcriptional profiles that accompany experimental sepsis. Shock 15: 411-418. https://doi.org/10.1097/SHK.0000000000000528
- Crotty Alexander LE, Marsh BJ, Timmer AM, Lin AE, Zainabadi K, Czopik A, et al. 2013. Myeloid cell sirtuin-1 expression does not alter host immune responses to Gram-negative endotoxemia or Gram-positive bacterial infection. PLoS One 8: e84481.
- Radkar V, Hardej D, Lau-Cam C, Billack B. 2007. Evaluation of resveratrol and piceatannol cytotoxicity in macrophages, T cells, and skin cells. Arh. Hig. Rada Toksikol. 58: 293-304. https://doi.org/10.2478/v10004-007-0020-8
- Zykova TA, Zhu F, Zhai X, Ma WY, Ermakova SP, Lee KW, et al. 2008. Resveratrol directly targets COX-2 to inhibit carcinogenesis. Mol. Carcinog. 47: 797-805. https://doi.org/10.1002/mc.20437
- Gagnaire A, Gorvel L, Papadopoulos A, Von Bargen K, Mege JL, Gorvel JP. 2016. COX-2 Inhibition reduces Brucella bacterial burden in draining lymph nodes. Front. Microbiol. 7: 1987.
- Lee HJ, Kang MG, Cha HY, Kim YM, Lim Y, Yang SJ. 2019. Effects of piceatannol and resveratrol on sirtuins and hepatic inflammation in high-fat diet-fed mice. J. Med. Food 22: 833-840. https://doi.org/10.1089/jmf.2018.4261
- Wang Y, Liang X, Chen Y, Zhao X. 2016. Screening SIRT1 activators from medicinal plants as bioactive compounds against oxidative damage in mitochondrial function. Oxid. Med. Cell. Longev. 2016: 4206392.
- Huy TX, Reyes AW, Hop HT, Arayan LT, Min W, Lee HJ, et al. 2017. Intracellular trafficking modulation by ginsenoside Rg3 inhibits Brucella abortus uptake and intracellular survival within RAW 264.7 cells. J. Microbiol. Biotechnol. 27: 616-623. https://doi.org/10.4014/jmb.1609.09060
- Reyes AWB, Kim H, Huy TXN, Vu SH, Nguyen TT, Kang CK, et al. 2021. Immune-metabolic receptor GPR84 surrogate and endogenous agonists, 6-OAU and lauric acid, alter Brucella abortus 544 infection in both in vitro and in vivo systems. Microb. Pathog. 158: 105079.
- Yan L, Lu L, Hu F, Shetti D, Wei K. 2019. Piceatannol attenuates RANKL-induced osteoclast differentiation and bone resorption by suppressing MAPK, NF-κB and AKT signaling pathways and promotes Caspase3-mediated apoptosis of mature osteoclasts. R. Soc. Open Sci. 6: 190360.
- Gomez G, Adams LG, Rice-Ficht A, Ficht TA. 2013. Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis. Front. Cell. Infect. Microbiol. 3: 17.
- Ko J, Splitter GA. 2003. Molecular host-pathogen interaction in brucellosis: current understanding and future approaches to vaccine development for mice and humans. Clin. Microbiol. Rev. 16: 65-78. https://doi.org/10.1128/CMR.16.1.65-78.2003
- Pei J, Kahl-McDonagh M, Ficht TA. 2014. Brucella dissociation is essential for macrophage egress and bacterial dissemination. Front. Cell. Infect. Microbiol. 4: 23.
- Chen X, Lu Y, Zhang Z, Wang J, Yang H, Liu G. 2015. Intercellular interplay between Sirt1 signaling and cell metabolism in immune cell biology. Immunology 145: 455-467. https://doi.org/10.1111/imm.12473
- Cheng CY, Gutierrez NM, Marzuki MB, Lu X, Foreman TW, Paleja B, et al. 2017. Host sirtuin 1 regulates mycobacterial immunopathogenesis and represents a therapeutic target against tuberculosis. Sci. Immunol. 2: eaaj1789.
- Ahmed W, Zheng K, Liu ZF. 2016. Establishment of chronic infection: Brucella's stealth strategy. Front. Cell. Infect. Microbiol. 6: 30.
- Nijampatnam B, Zhang H, Cai X, Michalek SM, Wu H, Velu SE. 2018. Inhibition of Streptococcus mutans biofilms by the natural stilbene piceatannol through the inhibition of glucosyltransferases. ACS Omega 3: 8378-8385. https://doi.org/10.1021/acsomega.8b00367
- Bi S, Qu Y, Shao J, Zhang J, Li W, Zhang L, et al. 2022. Ginsenoside Rg3 ameliorates stress of broiler chicks induced by Escherichia coli lipopolysaccharide. Front. Vet. Sci. 9: 878018.
- Trinchieri G. 2003. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat. Rev. Immunol. 3:133-146. https://doi.org/10.1038/nri1001
- Guimaraes ES, Martins JM, Gomes MTR, Cerqueira DM, Oliveira SC. 2020. Lack of interleukin-6 affects IFN-γ and TNF-α production and early in vivo control of Brucella abortus infection. Pathogens 9: 1040.
- Shen P, Deng X, Chen Z, Ba X, Qin K, Huang Y, et al. 2021. SIRT1: A potential therapeutic target in autoimmune diseases. Front. Immunol. 12: 779177.
- Kim S, Lee DS, Watanabe K, Furuoka H, Suzuki H, Watarai M. 2005. Interferon-gamma promotes abortion due to Brucella infection in pregnant mice. BMC Microbiol. 5: 22.
- Zhan Y, Liu Z, Cheers C. 1996. Tumor necrosis factor alpha and interleukin-12 contribute to resistance to the intracellular bacterium Brucella abortus by different mechanisms. Infect. Immun. 64: 2782-2786. https://doi.org/10.1128/iai.64.7.2782-2786.1996
- Murphy EA, Sathiyaseelan J, Parent MA, Zou B, Baldwin CL. 2001. Interferon-gamma is crucial for surviving a Brucella abortus infection in both resistant C57BL/6 and susceptible BALB/c mice. Immunology 103: 511-518. https://doi.org/10.1046/j.1365-2567.2001.01258.x