Acknowledgement
This work was supported by the Youth Science Foundation Program of Shandong First Medical University (202201-034), Shandong Medical and Health Science and Technology Development Project (202101060623), the National Natural Science Foundation of China (21602152) and the Student Research Training Program of Shandong First Medical University (2022104391556). We thank Bullet Edits Limited for the linguistic editing and proofreading of the manuscript.
References
- Selim KA, El-Beih AA, AbdEl-Rahman TM, El-Diwany AI. 2012. Biology of endophytic fungi. Curr. Res. Environ. Appl. Mycol. 2: 31-82. https://doi.org/10.5943/cream/2/1/3
- Tan RX, Zou WX. 2001. Endophytes: a rich source of functional metabolites. Nat. Prod. Rep. 18: 448-459. https://doi.org/10.1039/b100918o
- Zhao J, Shan T, Mou Y, Zhou L. 2011. Plant-derived bioactive compounds produced by endophytic fungi. Mini. Rev. Med. Chem. 11: 159-168. https://doi.org/10.2174/138955711794519492
- Manganyi MC, Ateba CN. 2020. Untapped potentials of endophytic fungi: a review of novel bioactive compounds with biological applications. Microorganisms 8: 1934.
- Martinez-Klimova E, Rodriguez-Pena K, Sanchez S. 2017. Endophytes as sources of antibiotics. Biochem. Pharmacol. 134: 1-17. https://doi.org/10.1016/j.bcp.2016.10.010
- Alvin A, Miller KI, Neilan BA. 2014. Exploring the potential of endophytes from medicinal plants as sources of antimycobacterial compounds. Microbiol. Res. 169: 483-495. https://doi.org/10.1016/j.micres.2013.12.009
- Xiao J, Zhang Q, Gao YQ, Tang JJ, Zhang AL. 2014. Secondary metabolites from the endophytic Botryosphaeria dothidea of Melia azedarach and their anti-fungal, antibacterial, antioxidant, and cytotoxic activities. J. Agr. Food Chem. 62: 3584-3590. https://doi.org/10.1021/jf500054f
- Uzma F, Mohan CD, Hashem A, Konappa NM, Rangappa S, Kamath PV, et al. 2018. Endophytic fungi - alternative sources of cytotoxic compounds: a review. Front. Pharmacol. 9: 309.
- Li J, Chen YT. 2002. Two flavonoids from Lagopsis supina. Acta Pharm. Sin. 237: 186-188.
- Zhang J, Huang Z, Huo HX, Li YT. 2015. Chemical constituents from Lagopsis supina (Steph.) IK.-Gal. ex Knorr. Biochem. Syst. Ecol. 61: 424-428. https://doi.org/10.1016/j.bse.2015.07.010
- Li H, Li MM, Su SQ. 2014. Anti-inflammatory labdane diterpenoids from Lagopsis supina. J. Nat. Prod. 77: 1047-1053. https://doi.org/10.1021/np5001329
- Zhang LM, Jiang H, Liu YK, Zhang XF, Niu CY, Zhang WM. 2004. The effects of extracts from herba Lagopsis on microcirculation of acute blood stasis rats. Chin. Med. Mater. 27: 509-511. https://doi.org/10.1081/BIO-200039608
- Liang HF, Wang WP, Zhang YP, Du ST, Jiang H. 2008. Effect of ethanol extract from Mrrubium incisum against the myocardium injury in experimental DIC rats. Lishizhen Med. Mater. Med. Res. 19: 1650-1651.
- Zhang YC, Han R, Hou YL, Li BL, Niu FL, Zhao ZG, et al. 2008. Effects of ethanol extract from Mrrubium incisum on free radical injury in shock rats, Lishizhen Med. Mater. Med. Res. 19: 1909-1910.
- Gu H, Zhang S, Liu L, Yang Z, Zhao F, Tian Y. 2022. Antimicrobial potential of endophytic fungi from Artemisia argyi and bioactive metabolites from Diaporthe sp. AC1. Front. Microbiol. 13: 908836.
- Liu P, Zhang D, Shi R, Yang Z, Zhao F, Tian Y. 2019. Antimicrobial potential of endophytic fungi from Astragalus chinensis. 3 Biotech 9: 405.
- Visser AA, Nobre T, Currie CR, Aanen DK, Poulsen M. 2012. Exploring the potential for Actinobacteria as defensive symbionts in fungus-growing termites. Microb. Ecol. 63: 975-985. https://doi.org/10.1007/s00248-011-9987-4
- Zhao SS, Zhang YY, Yan Y, Cao LL, Xiao Y, Ye YH. 2017. Chaetomium globosum CDW7, a potential biological control strain and its anti-fungal metabolites. FEMS Microbiol. Lett. 364. doi: 10.1093/femsle/fnw287.
- Zhang YL, Li S, Jiang DH, Kong LC, Zhang PH, Xu JD. 2013. Anti-fungal activities of metabolites produced by a termite-associated Streptomyces canus BYB02. J. Agric. Food Chem. 61: 1521-1524. https://doi.org/10.1021/jf305210u
- Lee J, Gamage CDB, Kim GJ, Hillman PF, Lee C, Lee EY, et al. 2020. Androsamide, a cyclic tetrapeptide from a marine Nocardiopsis sp., suppresses motility of colorectal cancer cells. J. Nat. Prod. 83: 3166-3172. https://doi.org/10.1021/acs.jnatprod.0c00815
- Chow S, Krainz T, Bernhardt PV, Williams CM. 2019. En route to D-ring inverted phorbol esters. Org. Lett. 6: 18-55. https://doi.org/10.1021/acs.orglett.9b03379
- Ouyang MA, Chang C, Wei YS, Kuo YH. 2008. New phenol glycosides from the roots of Rhus javanica var. roxburghiana. J. Chin. Chem. Soci. 55: 223-227. https://doi.org/10.1002/jccs.200800033
- Leggio A, De Marco R, Perri F, Spinella M, Liguori A. 2012. Unusual reactivity of dimethylsulfoxonium methylide with esters. Eur. J. Org. Chem. 2012: 14-118. https://doi.org/10.1002/ejoc.201190106
- Kimura Y, Nakahara S, Fujioka S. 1996. Aspyrone, a nematicidal compound isolated from the fungus, Aspergillus melleus. Biosci. Biotechnol. Biochem. 60: 1375-1376. https://doi.org/10.1271/bbb.60.1375
- Yang L, He J. 2020. Lagopsis supina extract and its fractions exert prophylactic effects against blood stasis in rats via anti-coagulation, anti-platelet activation and anti-fibrinolysis and chemical characterization by UHPLC-qTOF-MS/MS. Biomed. Pharmacother. 132: 110899.
- Ab Rahman SFS, Singh E, Pieterse CM, Schenk PM. 2018. Emerging microbial biocontrol strategies for plant pathogens. Plant Sci. 267: 102-111. https://doi.org/10.1016/j.plantsci.2017.11.012
- Petchiappan A, Chatterji D. 2017. Antibiotic resistance: current perspectives. ACS Omega 2: 7400-7409. https://doi.org/10.1021/acsomega.7b01368
- Yu H, Zhang L, Li L, Zheng C, Guo L, Li W, et al. 2010. Recent developments and future prospects of antimicrobial metabolites produced by endophytes. Microbiol. Res. 165: 437-449. https://doi.org/10.1016/j.micres.2009.11.009
- Deshmukh SK, Gupta MK, Prakash V, Saxena S. 2018. Endophytic fungi: A source of potential antifungal compounds. J. Fungi 4: 77.
- Frank M, Ozkaya FC, Muller WE, Hamacher A, Kassack MU, Lin W, et al. 2019. Cryptic secondary metabolites from the sponge-associated fungus Aspergillus ochraceus. Mar. Drugs 17: 99.
- Hareeri RH, Aldurdunji MM, Abdallah HM, Alqarni AA, Mohamed SGA, Mohamed GA, et al. 2022. Aspergillus ochraceus: Metabolites, bioactivities, biosynthesis, and biotechnological potential. Molecules 27: 6759.
- Liu Y, Li XM, Meng LH, Wang BG. 2015. Polyketides from the marine mangrove-derived fungus Aspergillus ochraceus MA-15 and their activity against aquatic pathogenic bacteria. Phytochem. Lett. 12: 232-236. https://doi.org/10.1016/j.phytol.2015.04.009
- Cui CM, Li XM, Meng L, Li CS, Huang CG. 2010. 7-Nor-ergosterolide, a pentalactone-containing norsteroid and related seroids from the marine-derived endophytic Aspergillus ochraceus EN-31. J. Nat. Prod. 73: 1780-1784. https://doi.org/10.1021/np100386q
- Tan Y, Yang B, Lin X, Luo X, Pang X, Tang L, et al. 2018. Nitrobenzoyl sesquiterpenoids with cytotoxic activities from a marine-derived Aspergillus ochraceus fungus. J. Nat. Prod. 81: 92-97. https://doi.org/10.1021/acs.jnatprod.7b00698
- Weller M G. 2012. A unifying review of bioassay-guided fractionation, effect-directed analysis and related techniques. Sensors 12: 9181-9209. https://doi.org/10.3390/s120709181
- Kang SW, Kim SW. 2004. New anti-fungal activity of penicillic acid against Phytophthora species. Biotechnol. Lett. 26: 695-698. https://doi.org/10.1023/B:BILE.0000024090.96693.a4
- Nguyen HT, Yu NH, Jeon SJ, Lee HW, Bae CH, Yeo JH, et al. 2016. Antibacterial activities of penicillic acid isolated from Aspergillus persii against various plant pathogenic bacteria. Lett. Appl. Microbiol. 62: 488-493. https://doi.org/10.1111/lam.12578
- Bray F, Laversanne M, Weiderpass E, Soerjomataram I. 2021. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer 127: 3029-3030. https://doi.org/10.1002/cncr.33587
- Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Pineros M, Znaor A, et al. 2021. Cancer statistics for the year 2020: an overview. Int. J. Cancer 149: 778-789. https://doi.org/10.1002/ijc.33588
- Hridoy M, Gorapi MZH, Noor S, Chowdhury NS, Rahman MM, Muscari I, et al. 2022. Putative anticancer compounds from plant-derived endophytic fungi: a review. Molecules 27: 296.
- Grabsch C, Wichmann G, Loffhagen N, Herbarth O, Muller A. 2006. Cytotoxicity assessment of gliotoxin and penicillic acid in Tetrahymena pyriformis. Environ. Toxicol. 21: 111-117. https://doi.org/10.1002/tox.20162
- Wu MD, Cheng MJ, Chen YL, Chang HH, Kuo YH, Lin CC, et al. 2019. Chemical constituents from the fungus Antrodia cinnamomea. Nat. Prod. Comm. 14: 129-130. https://doi.org/10.1177/1934578X1901400134