DOI QR코드

DOI QR Code

A Review of the Efficacy of Ultraviolet C Irradiation for Decontamination of Pathogenic and Spoilage Microorganisms in Fruit Juices

  • Ahmad Rois Mansur (Enterprise Solution Research Center, Korea Food Research Institute) ;
  • Hyun Sung Lee (Enterprise Solution Research Center, Korea Food Research Institute) ;
  • Chang Joo Lee (Department of Food Science and Biotechnology, Wonkwang University)
  • Received : 2022.12.12
  • Accepted : 2023.01.06
  • Published : 2023.04.28

Abstract

Ultraviolet C (UV-C, 200-280 nm) light has germicidal properties that inactivate a wide range of pathogenic and spoilage microorganisms. UV-C has been extensively studied as an alternative to thermal decontamination of fruit juices. Recent studies suggest that the efficacy of UV-C irradiation in reducing microorganisms in fruit juices is greatly dependent on the characteristics of the target microorganisms, juice matrices, and parameters of the UV-C treatment procedure, such as equipment and processing. Based on evidence from recent studies, this review describes how the characteristics of target microorganisms (e.g., type of microorganism/strain, acid adaptation, physiological states, single/composite inoculum, spore, etc.) and fruit juice matrices (e.g., UV absorbance, UV transmittance, turbidity, soluble solid content, pH, color, etc.) affect the efficacy of UV-C. We also discuss the influences on UV-C treatment efficacy of parameters, including UV-C light source, reactor conditions (e.g., continuous/batch, size, thickness, volume, diameter, outer case, configuration/arrangement), pumping/flow system conditions (e.g., sample flow rate and pattern, sample residence time, number of cycles), homogenization conditions (e.g., continuous flow/recirculation, stirring, mixing), and cleaning capability of the reactor. The collective facts indicate the immense potential of UV-C irradiation in the fruit juice industry. Existing drawbacks need to be addressed in future studies before the technique is applicable at the industrial scale.

Keywords

Acknowledgement

This work was supported by the Main Research Program (GE230100-01) of the Korea Food Research Institute funded by the Ministry of Agriculture, Food and Rural Affairs, Republic of Korea.

References

  1. Neves MF, Trombin VG, Marques VN, Martinez LF. 2020. Global orange juice market: a 16-year summary and opportunities for creating value. Trop. Plant Pathol. 45: 166-174.  https://doi.org/10.1007/s40858-020-00378-1
  2. Karasawa MMG, Mohan C. 2018. Fruits as prospective reserves of bioactive compounds: a review. Nat. Prod. Bioprospect. 8: 335-346.  https://doi.org/10.1007/s13659-018-0186-6
  3. Dhalaria R, Verma R, Kumar D, Puri S, Tapwal A, Kumar V, et al. 2020. Bioactive compounds of edible fruits with their anti-aging properties: a comprehensive review to prolong human life. Antioxidant 9: 1123. 
  4. Salomao BDCM. 2018. Pathogens and spoilage microorganisms in fruit juice: an overview, pp. 291-308. In Rajauria G, Tiwari BK (eds.), Fruit juices: Extraction, Composition, Quality and Analysis. Academic Press, London. https://doi.org/10.1016/B978-0-12-802230-6.00016-3. 
  5. Lv R, Liu D, Zhou J. 2021. Bacterial spore inactivation by non-thermal technologies: resistance and inactivation mechanisms. Curr. Opin. Food Sci. 42: 31-36.  https://doi.org/10.1016/j.cofs.2020.12.014
  6. Tournas VH, Heeres J, Burgess L. 2006. Moulds and yeasts in fruit salads and fruit juices. Food Microbiol. 23: 684-688.  https://doi.org/10.1016/j.fm.2006.01.003
  7. Dantigny P, Guilmart A, Bensoussan M. 2005. Basis of predictive mycology. Int. J. Food Microbiol. 100: 187-196.  https://doi.org/10.1016/j.ijfoodmicro.2004.10.013
  8. Gomez PL, Welti-Chanes J, Alzamora SM. 2011. Hurdle technology in fruit processing. Ann. Rev. Food Sci. Technol. 2: 447-465.  https://doi.org/10.1146/annurev-food-022510-133619
  9. Rawson A, Patras A, Tiwari BK, Noci F, Koutchma T, Brunton N. 2011. Effect of thermal and non thermal processing technologies on the bioactive content of exotic fruits and their products: review of recent advances. Food Res. Int. 44: 1875-1887.  https://doi.org/10.1016/j.foodres.2011.02.053
  10. Roobab U, Aadil RM, Madni GM, Bekhit AED. 2018. The impact of nonthermal technologies on the microbiological quality of juices: a review. Compr. Rev. Food Sci. Food Saf. 17: 437-457.  https://doi.org/10.1111/1541-4337.12336
  11. US FDA. 2000. Ultraviolet radiation for the processing and treatment of food. Available from https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?fr=179.39. Accessed Nov. 27, 2022. 
  12. US FDA. 2001. Hazard analysis and critical point (HACCP); procedures for the safe and sanitary processing and importing of juice. Available from https://www.federalregister.gov/d/01-1291. Accessed Nov. 27, 2022. 
  13. Guerrero-Beltran JA, Barbosa-Canovas GV. 2004. Advantages and limitations on processing foods by UV light. Food Sci. Technol. Int. 10: 13747. 
  14. Shah NNAK, Shamsudin R, Rahman RA, Adzahan NM. 2016. Fruit juice production using ultraviolet pasteurization: a review. Beverages 2: 22. 
  15. Delorme MM, Guimaraes JT, Coutinho NM, Balthazar CF, Rocha RS, Silva R, et al. 2020. Ultraviolet radiation: an interesting technology to preserve quality and safety of milk and dairy foods. Trends Food Sci. Technol. 102: 146-154.  https://doi.org/10.1016/j.tifs.2020.06.001
  16. Singh H, Bhardwaj SK, Khatri M, Kim KH, Bhardwaj N. 2021. UVC radiation for food safety: an emerging technology for the microbial disinfection of food products. Chem. Eng. J. 417: 128084. 
  17. Koutchma T. 2009. Advances in ultraviolet light technology for nonthermal processing of liquid foods. Food Bioproc. Tech. 2: 138-155.  https://doi.org/10.1007/s11947-008-0178-3
  18. Nicolau-Lapena I, Colas-Meda P, Vinas I, Alegre I. 2022. Inactivation of Escherichia coli, Salmonella enterica and Listeria monocytogenes on apple peel and apple juice by ultraviolet C light treatments with two irradiation devices. Int. J. Food Microbiol. 364: 109535. 
  19. Gopisetty VVS, Patras A, Kilonzo-Nthenge A, Yannam S, Bansode RR, Sasges M, et al. 2018. Impact of UV-C irradiation on the quality, safety, and cytotoxicity of cranberry-flavored water using a novel continuous flow UV system. LWT-Food Sci. Technol. 95: 230-239.  https://doi.org/10.1016/j.lwt.2018.04.042
  20. Gautam D, Umagiliyage AL, Dhital R, Joshi P, Watson DG, Fisher DJ, et al. 2017. Nonthermal pasteurization of tender coconut water using a continuous flow coiled UV reactor. LWT-Food Sci. Technol. 83: 127-131.  https://doi.org/10.1016/j.lwt.2017.05.008
  21. Fenoglio D, Ferrario M, Schenk M, Guerrero S. 2020. Effect of pilot-scale UV-C light treatment assisted by mild heat on E. coli, L. plantarum and S. cerevisiae inactivation in clear and turbid fruit juices. Storage study of surviving populations. Int. J. Food Microbiol. 332: 108767. 
  22. Ferrario M, Fenoglio D, Chantada A, Guerrero S. 2020. Hurdle processing of turbid fruit juices involving encapsulated citral and vanillin addition and UV-C treatment. Int. J. Food Microbiol. 332: 108811. 
  23. Gomez-Sanchez DL, Antonio-Gutierrez O, Lopez-Diaz AS, Palou E, Lopez-Malo A, Ramirez-Corona N. 2020. Performance of combined technologies for the inactivation of Saccharomyces cerevisiae and Escherichia coli in pomegranate juice: the effects of a continuous-flow UV-Microwave system. J. Food Process Eng. 43: e13565. 
  24. Feliciano RJ, Estilo EEC, Nakano H, Gabriel AA. 2019. Ultraviolet-C resistance of selected spoilage yeasts in orange juice. Food Microbiol. 78: 73-81.  https://doi.org/10.1016/j.fm.2018.10.003
  25. Kang JW, Kim WJ, Kang DH. 2020. Synergistic effect of 222-nm krypton-chlorine excilamp and mild heating combined treatment on inactivation of Escherichia coli O157: H7 and Salmonella Typhimurium in apple juice. Int. J. Food Microbiol. 329: 108665. 
  26. Wang F, Mendonca A, Brehm-Stecher BF, Dickson J, DiSpirito A, Shaw A, et al. 2018. Long-term survival phase cells of Salmonella Typhimurium ATCC 14028 have significantly greater resistance to ultraviolet radiation in 0.85% saline and apple juice. Foodborne Pathog. Dis. 15: 538-543.  https://doi.org/10.1089/fpd.2018.2423
  27. Gayan E, Condon S, Alvarez I. 2014. Biological aspects in food preservation by ultraviolet light: a review. Food Bioproc. Tech. 7: 1-20.  https://doi.org/10.1007/s11947-013-1168-7
  28. Fenoglio D, Ferrario M, Schenk M, Guerrero S. 2019. UV-C light inactivation of single and composite microbial populations in tangerine-orange juice blend. Evaluation of some physicochemical parameters. Food Bioprod. Process. 117: 149-159.  https://doi.org/10.1016/j.fbp.2019.07.005
  29. Souza VR, Koutchma T. 2021. Ultraviolet Light Microbial Inactivation in Liquid Foods, pp. 146-170. In Knoerzer K, Muthukumarappan K (eds.), Innovative Food Processing Technologies: A Comprehensive Review. Elsevier. https://doi.org/10.1016/B978-0-08-100596-5.22971-5 
  30. Ferreira TV, Mizuta AG, Menezes JLD, Dutra TV, Bonin E, Castro JC, et al. 2020. Effect of ultraviolet treatment (UV-C) combined with nisin on industrialized orange juice in Alicyclobacillus acidoterrestris spores. LWT-Food Sci. Technol. 133: 109911. 
  31. Tremarin A, Brandao TRS, Silva CLM. 2017. Inactivation kinetics of Alicyclobacillus acidoterrestris in apple juice submitted to ultraviolet radiation. Food Control 73: 18-23.  https://doi.org/10.1016/j.foodcont.2016.07.008
  32. Menezes NMC, Longhi DA, Ortiz BO, Junior AF, de Aragao GMF. 2020. Modeling the inactivation of Aspergillus fischeri and Paecilomyces niveus ascospores in apple juice by different ultraviolet light irradiances. Int. J. Food Microbiol. 333: 108773. 
  33. Sauceda-Galvez JN, Roca-Couso R, Martinez-Garcia M, Hernandez-Herrero MM, Gervilla R, Roig-Sagues AX. 2019. Inactivation of ascospores of Talaromyces macrosporus and Neosartorya spinosa by UV-C, UHPH and their combination in clarified apple juice. Food Control 98: 120-125.  https://doi.org/10.1016/j.foodcont.2018.11.002
  34. Muller A, Gunthner KA, Stahl MR, Greiner R, Franz CMAP, Posten C. 2015. Effect of physical properties of the liquid on the efficiency of a UV-C treatment in a coiled tube reactor. Innov. Food Sci. Emerg. Technol. 29: 240-246.  https://doi.org/10.1016/j.ifset.2015.03.018
  35. Hinds LM, O'Donnell CP, Akhter M, Tiwari BK. 2019. Principles and mechanisms of ultraviolet light emitting diode technology for food industry applications. Innov. Food Sci. Emerg. Technol. 56: 102153. 
  36. Antonio-Gutierrez O, Lopez-Diaz A, Palou E, Lopez-Malo A, Ramirez-Corona N. 2019. Characterization and effectiveness of short-wave ultraviolet irradiation reactors operating in continuous recirculation mode to inactivate Saccharomyces cerevisiae in grape juice. J. Food Eng. 241: 88-96.  https://doi.org/10.1016/j.jfoodeng.2018.08.011
  37. Carrillo MG, Ferrario M, Guerrero S. 2017. Study of the inactivation of some microorganisms in turbid carrot-orange juice blend processed by ultraviolet light assisted by mild heat treatment. J. Food Eng. 212: 213-225.  https://doi.org/10.1016/j.jfoodeng.2017.06.005
  38. Beristain-Bauza S, Martinez-Nino A, Ramirez-Gonzalez AP, Avila-Sosa R, Ruiz-Espinosa H, Ruiz-Lopez II, et al. 2018. Inhibition of Salmonella Typhimurium growth in coconut (Cocos nucifera L.) water by hurdle technology. Food Control 92: 312-318.  https://doi.org/10.1016/j.foodcont.2018.05.010
  39. Carrillo MG, Ferrario M, Guerrero S. 2018. Effectiveness of UV-C light assisted by mild heat on Saccharomyces cerevisiae KE 162 inactivation in carrot-orange juice blend studied by flow cytometry and transmission electron microscopy. Food Microbiol. 73: 1-10.  https://doi.org/10.1016/j.fm.2017.12.012
  40. Ramesh T, Yaparatne S, Tripp CP, Nayak B, Amirbahman A. 2018. Ultraviolet light-assisted photocatalytic disinfection of Escherichia coli and its effects on the quality attributes of white grape juice. Food Bioproc. Tech. 11: 2242-2252.  https://doi.org/10.1007/s11947-018-2182-6
  41. Koutchma T. 2009. Principles and applications of UV technology, pp. 21-52. In Sun DW, Koutchma T, Forney LJ, Moraru CI (eds.), Ultraviolet light in food technology, 1st Ed. CRC Press, Boca Raton. https://doi.org/10.1201/9781315112862 
  42. Araby E, Abd El-Khalek HH, Amer MS. 2022. Synergistic effects of UV-C light in combination with chitosan nanoparticles against foodborne pathogens in pomegranate juice with enhancement of its health-related components. J. Food Process. Preserv. 46: e16695. 
  43. Kim SS, Park SH, Kim SH, Kang DH. 2019. Synergistic effect of ohmic heating and UV-C irradiation for inactivation of Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes in buffered peptone water and tomato juice. Food Control 102: 69-75.  https://doi.org/10.1016/j.foodcont.2019.03.011
  44. Antonio-Gutierrez O, Lopez-Malo A, Ramirez-Corona N, Palou E. 2017. Enhancement of UVC-light treatment of tangerine and grapefruit juices through ultrasonic atomization. Innov. Food Sci. Emerg. Technol. 39: 7-12.  https://doi.org/10.1016/j.ifset.2016.10.019
  45. Akgun MP, unluturk S. 2017. Effects of ultraviolet light emitting diodes (LEDs) on microbial and enzyme inactivation of apple juice. Int. J. Food Microbiol. 260: 65-74.  https://doi.org/10.1016/j.ijfoodmicro.2017.08.007
  46. Niu L, Wu Z, Yang L, Wang Y, Xiang Q, Bai Y. 2021. Antimicrobial effect of UVC light-emitting diodes against Saccharomyces cerevisiae and their application in orange juice decontamination. J. Food Prot. 84: 139-146.  https://doi.org/10.4315/JFP-20-200
  47. Xiang Q, Fan L, Zhang R, Ma Y, Liu S, Bai Y. 2020. Effect of UVC light-emitting diodes on apple juice: inactivation of Zygosaccharomyces rouxii and determination of quality. Food Control. 111: 107082. 
  48. Riganakos KA, Karabagias IK, Gertzou I, Stahl M. 2017. Comparison of UV-C and thermal treatments for the preservation of carrot juice. Innov. Food Sci. Emerg. Technol. 42: 165-172.  https://doi.org/10.1016/j.ifset.2017.06.015
  49. Ferrario M, Schenk M, Carrillo MG, Guerrero S. 2018. Development and quality assessment of a turbid carrot-orange juice blend processed by UV-C light assisted by mild heat and addition of Yerba Mate (Ilex paraguariensis) extract. Food Chem. 269: 567-576. https://doi.org/10.1016/j.foodchem.2018.06.149