Acknowledgement
This work was supported by the Cooperative Research Program for Agricultural Science & Technology Development (Project No. PJ01492602), Rural Development Administration, Republic of Korea, and also by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MIST, No. 2021R1C1C2004411); JW Ahn was supported by the Basic Science Research Program (No. 2020R1I1A1A01057880) and the Korea Initiative for fostering University of Research and Innovation Program (No.2020M3H1A1075314) through the National Research Foundation of Korea (NRF) funded by the Korean government.
References
- Anjum A, Zuber M, Zia KM, Noreen A, Anjum MN, Tabasum S. 2016. Microbial -production of polyhydroxyalkanoates (PHAs) and its copolymers: a review of recent advancements. Int. J. Biol. Macromol. 89: 161-174. https://doi.org/10.1016/j.ijbiomac.2016.04.069
- REHM BHA. 2003. Polyester synthases: natural catalysts for plastics. Biochem. J. 376: 15-33. https://doi.org/10.1042/bj20031254
- Lee SY. 1996. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1-14. https://doi.org/10.1002/(SICI)1097-0290(19960105)49:1<1::AID-BIT1>3.0.CO;2-P
- Maehara A, Taguchi S, Nishiyama T, Yamane T, Doi Y. 2002. A repressor protein, PhaR, regulates Polyhydroxyalkanoate (PHA) synthesis via its direct interaction with PHA. J. Bacteriol. 184: 3992-4002. https://doi.org/10.1128/JB.184.14.3992-4002.2002
- Li M, Wilkins MR. 2020. Recent advances in polyhydroxyalkanoate production: feedstocks, strains and process developments. Int. J. Biol. Macromol. 156: 691-703. https://doi.org/10.1016/j.ijbiomac.2020.04.082
- Yoon J, Oh M-K. 2022. Strategies for Biosynthesis of C1 Gas-derived Polyhydroxyalkanoates: a review. Bioresour. Technol. 344: 126307.
- Salem A, Quayle J. 1971. Mutants of Pseudomonas AM1 that require glycollate or glyoxylate for growth on methanol or ethanol. Biochem. J. 124: 74P.
- Anthony C. 1982. The biochemistry of methylotrophs.
- Anderson AJ, Dawes E. 1990. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 54: 450-472. https://doi.org/10.1128/mr.54.4.450-472.1990
- Follner CG, Madkour M, Mayer F, Babel W, Steinbuchel A. 1997. Analysis of the PHA granule-associated proteins GA20. and GA11 in Methylobacterium extorquens and Methylobacterium rhodesianum. J. Basic Microbiol. 37: 11-21. https://doi.org/10.1002/jobm.3620370104
- Follner C, Babel W, Steinbuchel A. 1995. Isolation and purification of granule-associated proteins relevant for poly (3-hydroxybutyric acid) biosynthesis from methylotrophic bacteria relying on the serine pathway. Can. J. Microbiol. 41: 124-130. https://doi.org/10.1139/m95-178
- Alber BE. 2011. Biotechnological potential of the ethylmalonyl-CoA pathway. Appl. Microbiol. Biotechnol. 89: 17-25. https://doi.org/10.1007/s00253-010-2873-z
- Orita I, Unno G, Kato R, Fukui T. 2022. Biosynthesis of polyhydroxyalkanoate terpolymer from methanol via the reverse β-oxidation pathway in the presence of lanthanide. Microorganisms 10: 184.
- Korotkova N, Lidstrom ME, Chistoserdova L. 2005. Identification of genes involved in the glyoxylate regeneration cycle in Methylobacterium extorquens AM1, including two new genes, meaC and meaD. J. Bacteriol. 187: 1523-1526. https://doi.org/10.1128/JB.187.4.1523-1526.2005
- Zarzycki J, Schlichting A, Strychalsky N, Muller M, Alber BE, Fuchs G. 2008. Mesaconyl-coenzyme A hydratase, a new enzyme of two central carbon metabolic pathways in bacteria. J. Bacteriol. 190: 1366-1374. https://doi.org/10.1128/JB.01621-07
- Alber BE, Spanheimer R, Ebenau-Jehle C, Fuchs G. 2006. Study of an alternate glyoxylate cycle for acetate assimilation by Rhodobacter sphaeroides. Mol. Microbiol. 61: 297-309. https://doi.org/10.1111/j.1365-2958.2006.05238.x
- Vagin A, Teplyakov A. 1997. MOLREP: an automated program for molecular replacement. J. Appl. Crystallogr. 30: 1022-1025. https://doi.org/10.1107/S0021889897006766
- Langer G, Cohen SX, Lamzin VS, Perrakis A. 2008. Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7. Nat. Protoc. 3: 1171-1179. https://doi.org/10.1038/nprot.2008.91
- Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66: 486-501. https://doi.org/10.1107/S0907444910007493
- Murshudov GN, Skubak P, Lebedev AA, Pannu NS, Steiner RA, Nicholls RA, et al. 2011. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67: 355-367. https://doi.org/10.1107/S0907444911001314
- Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, et al. 2011. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67: 235-242. https://doi.org/10.1107/S0907444910045749
- Leesong M, Henderson BS, Gillig JR, Schwab JM, Smith JL. 1996. Structure of a dehydratase-isomerase from the bacterial pathway for biosynthesis of unsaturated fatty acids: two catalytic activities in one active site. Structure 4: 253-264. https://doi.org/10.1016/S0969-2126(96)00030-5
- Krissinel E, Henrick K. 2007. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372: 774-797. https://doi.org/10.1016/j.jmb.2007.05.022
- Koski MK, Haapalainen AM, Hiltunen JK, Glumoff T. 2004. A two-domain structure of one subunit explains unique features of eukaryotic hydratase 2. J. Biol. Chem. 279: 24666-24672. https://doi.org/10.1074/jbc.M400293200
- Yang M, Guja KE, Thomas ST, Garcia-Diaz M, Sampson NS. 2014. A distinct MaoC-like enoyl-CoA hydratase architecture mediates cholesterol catabolism in Mycobacterium tuberculosis. ACS Chem. Biol. 9: 2632-2645. https://doi.org/10.1021/cb500232h
- Wang H, Zhang K, Zhu J, Song W, Zhao L, Zhang X. 2013. Structure reveals regulatory mechanisms of a MaoC-like hydratase from Phytophthora capsici involved in biosynthesis of polyhydroxyalkanoates (PHAs). PLoS One 8: e80024.
- Hisano T, Tsuge T, Fukui T, Iwata T, Miki K, Doi Y. 2003. Crystal structure of the (R)-specific enoyl-CoA hydratase from Aeromonas caviae involved in polyhydroxyalkanoate biosynthesis. J. Biol. Chem. 278: 617-624. https://doi.org/10.1074/jbc.M205484200
- Large PJ, Peel D, Quayle JR. 1961. Microbial growth on C1 compounds. 2. Synthesis of cell constituents by methanol- and formategrown Pseudomonas AM1, and methanol-grown Hyphomicrobium vulgare. Biochem. J. 81: 470-480. https://doi.org/10.1042/bj0810470
- Chistoserdova L, Kalyuzhnaya MG, Lidstrom ME. 2009. The expanding world of methylotrophic metabolism. Annu. Rev. Microbiol. 63: 477-499. https://doi.org/10.1146/annurev.micro.091208.073600
- Methylotrophy in Methylobacterium extorquens AM1 from a genomic point of view. Available from https://journals.asm.org/doi/epub/10.1128/JB.185.10.2980-2987.2003. Accessed Jan. 12, 2023.
- doi:10.1016/j.tibtech.2008.10.009 | Elsevier Enhanced Reader. Available from https://reader.elsevier.com/reader/sd/pii/S0167779908002898?token=080122F0091F67B57D1E09C3DA5792545830DF0EF19375E6927C629DACB1FB721F33D5D75AC11AA6A96ECA012846DAE9&originRegion=us-east-1&originCreation=20230112055724. Accessed Jan. 12, 2023.