Acknowledgement
We thank Ms. J.-I. Park for helpful analyses and discussions with FE-SEM (Hitachi, Japan) at the Korea Basic Science Institute (KBSI).
References
- Azad MAK, Sarker M, Li T, Yin J. 2018. Probiotic species in the modulation of gut microbiota: An overview. BioMed Res. Int. 2018: 9478630.
- Nishida S, Ono Y, Sekimizu K. 2016. Lactic acid bacteria activating innate immunity improve survival in bacterial infection model of silkworm. Drug Discov. Ther. 10: 49-56. https://doi.org/10.5582/ddt.2016.01022
- Alvarez-Sieiro P, Montalban-Lopez M, Mu D, Kuipers OP. 2016. Bacteriocins of lactic acid bacteria: extending the family. Appl. Microbiol. Biotechnol. 100: 2939-2951. https://doi.org/10.1007/s00253-016-7343-9
- Didari T, Solki S, Mozaffari S, Nikfar S, Abdollahi M. 2014. A systematic review of the safety of probiotics. Expert Opin. Drug Saf. 13: 227-239. https://doi.org/10.1517/14740338.2014.872627
- Wasilewski A, Zielinska M, Storr M, Fichna J. 2015. Beneficial effects of probiotics, prebiotics, synbiotics, and psychobiotics in inflammatory bowel disease. Inflamm. Bowel Dis. 21: 1674-1682. https://doi.org/10.1097/MIB.0000000000000364
- Reid G, Burton J. 2002. Use of Lactobacillus to prevent infection by pathogenic bacteria. Microbes Infect. 4: 319-324. https://doi.org/10.1016/S1286-4579(02)01544-7
- Bamgbose. T, Iliyasu. AH, Anvikar. AR. 2021. Bacteriocins of lactic acid bacteria and their industrial application. Curr. Top. Lact. Acid Bact. Probiotics 7: 1-13. https://doi.org/10.35732/ctlabp.2021.7.1.1
- Velraeds MM, van de Belt-Gritter B, van der Mei HC, Reid G, Busscher HJ. 1998. Interference in initial adhesion of uropathogenic bacteria and yeasts to silicone rubber by a Lactobacillus acidophilus biosurfactant. J. Med. Microbiol. 47: 1081-1085. https://doi.org/10.1099/00222615-47-12-1081
- Perez Montoro B, Benomar N, Caballero Gomez N, Ennahar S, Horvatovich P, Knapp CW, et al. 2018. Proteomic analysis of Lactobacillus pentosus for the identification of potential markers involved in acid resistance and their influence on other probiotic features. Food Microbiol. 72: 31-38. https://doi.org/10.1016/j.fm.2017.11.006
- Lyu C, Zhao W, Peng C, Hu S, Fang H, Hua Y, et al. 2018. Exploring the contributions of two glutamate decarboxylase isozymes in Lactobacillus brevis to acid resistance and gamma-aminobutyric acid production. Microb. Cell Fact. 17: 180.
- Wang C, Cui Y, Qu X. 2018. Mechanisms and improvement of acid resistance in lactic acid bacteria. Arch. Microbiol. 200: 195-201. https://doi.org/10.1007/s00203-017-1446-2
- Khalil ES, Abd Manap MY, Mustafa S, Alhelli AM, Shokryazdan P. 2018. Probiotic properties of exopolysaccharide-producing Lactobacillus strains isolated from tempoyak. Molecules 23: 398.
- Dertli E, Mayer MJ, Narbad A. 2015. Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785. BMC Microbiol. 15: 8.
- Murthy HN, Georgiev MI, Kim YS, Jeong CS, Kim SJ, Park SY, et al. 2014. Ginsenosides: prospective for sustainable biotechnological production. Appl. Microbiol. Biotechnol. 98: 6243-6254. https://doi.org/10.1007/s00253-014-5801-9
- Chopra P, Chhillar H, Kim Y-J, Jo IH, Kim ST, Gupta R. 2021. Phytochemistry of ginsenosides: recent advancements and emerging roles. Crit. Rev. Food Sci. Nutr. 63: 630-638. https://doi.org/10.1080/10408398.2021.1952159
- Park SE, Na CS, Yoo SA, Seo SH, Son HS. 2017. Biotransformation of major ginsenosides in ginsenoside model culture by lactic acid bacteria. J. Ginseng Res. 41: 36-42. https://doi.org/10.1016/j.jgr.2015.12.008
- Kim YR, Yang CS. 2018. Protective roles of ginseng against bacterial infection. Microb. Cell 5: 472-481. https://doi.org/10.15698/mic2018.11.654
- Wang L, Huang Y, Yin G, Wang J, Wang P, Chen ZY, et al. 2020. Antimicrobial activities of Asian ginseng, American ginseng, and notoginseng. Phytother. Res. 34: 1226-1236. https://doi.org/10.1002/ptr.6605
- Mo SJ, Nam B, Bae CH, Park SD, Shim JJ, Lee JL. 2021. Characterization of novel Lactobacillus paracasei HY7017 capable of improving physiological properties and immune enhancing effects using red ginseng extract. Fermentation 7: 238.
- Kim H, Lee YS, Yu HY, Kwon M, Kim KK, In G, et al. 2022. Anti-inflammatory effects of Limosilactobacillus fermentum KGC1601 isolated from Panax ginseng and its probiotic characteristics. Foods 11: 1707.
- Zheng J, Wittouck S, Salvetti E, Franz CM, Harris HM, Mattarelli P, et al. 2020. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 70: 2782-2858. https://doi.org/10.1099/ijsem.0.004107
- Liu B, Zheng D, Zhou S, Chen L, Yang J. 2022. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res. 50: D912-D917. https://doi.org/10.1093/nar/gkab1107
- Florensa AF, Kaas RS, Clausen P, Aytan-Aktug D, Aarestrup FM. 2022. ResFinder - an open online resource for identification of antimicrobial resistance genes in next-generation sequencing data and prediction of phenotypes from genotypes. Microb. Genom. 8: 000748.
- FEEDAP. 2012. Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA J. 10: 2740.
- Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. https://doi.org/10.1006/meth.2001.1262
- Schmittgen TD, Livak KJ. 2008. Analyzing real-time PCR data by the comparative C(T) method. Nat. Protoc. 3: 1101-1108. https://doi.org/10.1038/nprot.2008.73
- Tallon R, Bressollier P, Urdaci MC. 2003. Isolation and characterization of two exopolysaccharides produced by Lactobacillus plantarum EP56. Res. Microbiol. 154: 705-712. https://doi.org/10.1016/j.resmic.2003.09.006
- Zhang Y, Dai X, Jin H, Man C, Jiang Y. 2021. The effect of optimized carbon source on the synthesis and composition of exopolysaccharides produced by Lactobacillus paracasei. J. Dairy Sci. 104: 4023-4032. https://doi.org/10.3168/jds.2020-19448
- Doron S, Snydman DR. 2015. Risk and safety of probiotics. Clin. Infect. Dis. 60: S129-134. https://doi.org/10.1093/cid/civ085
- Wassenaar TM, Zschuttig A, Beimfohr C, Geske T, Auerbach C, Cook H, et al. 2015. Virulence genes in a probiotic E. coli product with a recorded long history of safe use. Eur. J. Microbiol. Immunol. 5: 81-93. https://doi.org/10.1556/EuJMI-D-14-00039
- Dlamini ZC, Langa RLS, Aiyegoro OA, Okoh AI. 2019. Safety evaluation and colonisation abilities of four lactic acid bacteria as future probiotics. Probiotics Antimicrob. Proteins 11: 397-402. https://doi.org/10.1007/s12602-018-9430-y
- EFSA. 2007. Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA - Opinion of the Scientific Committee. EFSA J. 5: 587.
- Abriouel H, Casado Munoz MDC, Lavilla Lerma L, Perez Montoro B, Bockelmann W, Pichner R, et al. 2015. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Res. Int. 78: 465-481. https://doi.org/10.1016/j.foodres.2015.09.016
- Yang SY, Chae SA, Bang WY, Lee M, Ban OH, Kim SJ, et al. 2021. Anti-inflammatory potential of Lactiplantibacillus plantarum IDCC 3501 and its safety evaluation. Braz. J. Microbiol. 52: 2299-2306. https://doi.org/10.1007/s42770-021-00603-2
- Ban OH, Oh S, Park C, Bang WY, Lee BS, Yang SY, et al. 2020. Safety assessment of Streptococcus thermophilus IDCC 2201 used for product manufacturing in Korea. Food Sci. Nutr. 8: 6269-6274. https://doi.org/10.1002/fsn3.1925
- Chaiongkarna. A, Dathonga. J, Phatvejb W, Samana. P, Kuanchaa. C, Chatanona. L, et al. 2019. Characterization of prebiotics and their synergistic activities with Lactobacillus probiotics for β-glucuronidase reduction. Sci. Asia 45: 538.
- Lee. BS, Ban. O-H, Bang. WY, Chae. SA, Oh. S, Park. C, et al. 2021. Safety assessment of Lactobacillus reuteri IDCC 3701 based on phenotypic and genomic analysis. Ann. Microbiol. 71: 10.
- Yuan Y, Feng Z, Wang J. 2020. Vibrio vulnificus hemolysin: Biological activity, regulation of vvhA expression, and role in pathogenesis. Front. Immunol. 11: 599439.
- Prester L. 2011. Biogenic amines in fish, fish products and shellfish: a review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 28: 1547-1560. https://doi.org/10.1080/19440049.2011.600728
- Caggianiello G, Kleerebezem M, Spano G. 2016. Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl. Microbiol. Biotechnol. 100: 3877-3886. https://doi.org/10.1007/s00253-016-7471-2
- Fukao M, Zendo T, Inoue T, Nakayama J, Suzuki S, Fukaya T, et al. 2019. Plasmid-encoded glycosyltransferase operon is responsible for exopolysaccharide production, cell aggregation, and bile resistance in a probiotic strain, Lactobacillus brevis KB290. J. Biosci. Bioeng. 128: 391-397. https://doi.org/10.1016/j.jbiosc.2019.04.008
- Castro-Bravo N, Wells JM, Margolles A, Ruas-Madiedo P. 2018. Interactions of surface exopolysaccharides from Bifidobacterium and Lactobacillus within the intestinal environment. Front. Microbiol. 9: 2426.
- Poon KK, Westman EL, Vinogradov E, Jin S, Lam JS. 2008. Functional characterization of MigA and WapR: putative rhamnosyltransferases involved in outer core oligosaccharide biosynthesis of Pseudomonas aeruginosa. J. Bacteriol. 190: 1857-1865. https://doi.org/10.1128/JB.01546-07
- Sarkar D, Sidhu M, Singh A, Chen J, Lammas DA, van der Sar AM, et al. 2011. Identification of a glycosyltransferase from Mycobacterium marinum involved in addition of a caryophyllose moiety in lipooligosaccharides. J. Bacteriol. 193: 2336-2340. https://doi.org/10.1128/JB.00065-11
- Bhawal S, Kumari A, Kapila S, Kapila R. 2021. Physicochemical characteristics of novel cell-bound exopolysaccharide from probiotic Limosilactobacillus fermentum (MTCC 5898) and its relation to antioxidative activity. J. Agric. Food Chem. 69: 10338-10349. https://doi.org/10.1021/acs.jafc.1c03182