과제정보
This research was funded by the Bio & Medical Technology Development Program [grant numbers 2020M3A9I5037641 and 2021M3A9I4022731] of the National Research Foundation, funded by the Ministry of Science and ICT of the Republic of Korea and the KRIBB Research Initiative Program [grant number KGM5402322].
참고문헌
- van der Waal JC, de Jong E. 2016. Avantium chemicals: The high potential for the levulinic product tree, pp. 97-120. Industrial Biorenewables, Ed.
- Werpy T, Petersen G. 2004. Top value added chemicals from biomass (U.S. Department of Energy)
- Gorenflo V, Schmack G, Vogel R, Steinbuchel A. 2001. Development of a process for the biotechnological large-scale production of 4-hydroxyvalerate-containing polyesters and characterization of their physical and mechanical properties. Biomacromolecules 2: 45-57. https://doi.org/10.1021/bm0000992
- Hazer B, Steinbuchel A. 2007. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl. Microbiol. Biotechnol. 74: 1-12. https://doi.org/10.1007/s00253-006-0732-8
- Attwood D, Booth C, Yeates SG, Chaibundit C, Ricardo NMPS. 2007. Block copolymers for drug solubilisation: relative hydrophobicities of polyether and polyester micelle-core-forming blocks. Int. J. Pharm. 345: 35-41. https://doi.org/10.1016/j.ijpharm.2007.07.039
- Chang YC, Chu IM. 2008. Methoxy poly(ethylene glycol)-β-poly(valerolactone) diblock polymeric micelles for enhanced encapsulation and protection of camptothecin. Eur. Polym. J. 44: 3922-3930. https://doi.org/10.1016/j.eurpolymj.2008.09.021
- Alonso DM, Wettstein SG, Dumesic JA. 2013. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 15: 584-595. https://doi.org/10.1039/c3gc37065h
- Manzer LE. 2004. Catalytic synthesis of α-methylene-γ-valerolactone: a biomass-derived acrylic monomer. Appl. Catal. A: General. 272: 249-256. https://doi.org/10.1016/j.apcata.2004.05.048
- Isoni V, Kumbang D, Sharratt PN, Khoo HH. 2018. Biomass to levulinic acid: a techno-economic analysis and sustainability of biorefinery processes in Southeast Asia. J. Environ. Manag. 214: 267-275. https://doi.org/10.1016/j.jenvman.2018.03.012
- Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH. 2005. The biofine process - production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks, pp. 139-164. Biorefineries-Industrial Processes and Products, Ed.
- Alonso DM, Hakim SH, Zhou S, Won W, Hosseinaei O, Tao J, et al. 2017. Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization. Sci. Adv. 3: e1603301.
- Audemar M, Ciotonea C, De Oliveira Vigier K, Royer S, Ungureanu A, Dragoi B, et al. 2015. Selective hydrogenation of furfural to furfuryl alcohol in the presence of a recyclable cobalt/SBA-15 catalyst. ChemSusChem 8: 1885-1891. https://doi.org/10.1002/cssc.201403398
- Mellmer MA, Gallo JMR, Martin Alonso D, Dumesic JA. 2015. Selective production of levulinic acid from furfuryl alcohol in thf solvent systems over H-ZSM-5. ACS Catal. 5: 3354-3359. https://doi.org/10.1021/acscatal.5b00274
- Morone A, Apte M, Pandey RA. 2015. Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications. Renew. Sustain. Energ. Rev. 51: 548-565. https://doi.org/10.1016/j.rser.2015.06.032
- Vila-Santa A, Islam MA, Ferreira FC, Prather KLJ, Mira NP. 2021. Prospecting biochemical pathways to implement microbe-based production of the new-to-nature platform chemical levulinic acid. ACS Synth. Biol. 10: 724-736. https://doi.org/10.1021/acssynbio.0c00518
- Binder S, Schendzielorz G, Stabler N, Krumbach K, Hoffmann K, Bott M, et al. 2012. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol. 13: R40.
- Jha RK, Kern TL, Fox DT, CE MS. 2014. Engineering an Acinetobacter regulon for biosensing and high-throughput enzyme screening in E. coli via flow cytometry. Nucleic Acids Res. 42: 8150-8160. https://doi.org/10.1093/nar/gku444
- Kim SK, Kim SH, Subhadra B, Woo S-G, Rha E, Kim S-W, et al. 2018. A genetically encoded biosensor for monitoring isoprene production in engineered Escherichia coli. ACS Synth. Biol. 7: 2379-2390. https://doi.org/10.1021/acssynbio.8b00164
- Siedler S, Stahlhut SG, Malla S, Maury J, Neves AR. 2014. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metab. Eng. 21: 2-8. https://doi.org/10.1016/j.ymben.2013.10.011
- Yeom S-J, Kim M, Kwon KK, Fu Y, Rha E, Park S-H, et al. 2018. A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts. Nat. Commun. 9: 5053.
- Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, et al. 2000. Production of levulinic acid and use as a platform chemical for derived products. Resour. , Conserv. Recycl. 28: 227-239. https://doi.org/10.1016/S0921-3449(99)00047-6
- Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, et al. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351: 1196-1199. https://doi.org/10.1126/science.aad6359
- Lu H, Diaz DJ, Czarnecki NJ, Zhu C, Kim W, Shroff R, et al. 2022. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604: 662-667. https://doi.org/10.1038/s41586-022-04599-z
- Sasoh M, Masai E, Ishibashi S, Hara H, Kamimura N, Miyauchi K, et al. 2006. Characterization of the terephthalate degradation genes of Comamonas sp. strain E6. Appl. Environ. Microbiol. 72: 1825-1832. https://doi.org/10.1128/AEM.72.3.1825-1832.2006
- Pardo I, Jha RK, Bermel RE, Bratti F, Gaddis M, McIntyre E, et al. 2020. Gene amplification, laboratory evolution, and biosensor screening reveal MucK as a terephthalic acid transporter in Acinetobacter baylyi ADP1. Metab. Eng. 62: 260-274. https://doi.org/10.1016/j.ymben.2020.09.009
- Reshmy R, Athiyaman Balakumaran P, Divakar K, Philip E, Madhavan A, Pugazhendhi A, et al. 2022. Microbial valorization of lignin: Prospects and challenges. Bioresour. Technol. 344: 126240.
- Chio C, Sain M, Qin W. 2019. Lignin utilization: A review of lignin depolymerization from various aspects. Renew. Sust. Energ. Rev. 107: 232-249. https://doi.org/10.1016/j.rser.2019.03.008
- Kumar A, Anushree, Kumar J, Bhaskar T. 2020. Utilization of lignin: A sustainable and eco-friendly approach. J. Energy Inst.93: 235-271. https://doi.org/10.1016/j.joei.2019.03.005
- Borchert AJ, Henson WR, Beckham GT. 2022. Challenges and opportunities in biological funneling of heterogeneous and toxic substrates beyond lignin. Curr. Opin. Biotechnol. 73: 1-13. https://doi.org/10.1016/j.copbio.2021.06.007
- Rand JM, Pisithkul T, Clark RL, Thiede JM, Mehrer CR, Agnew DE, et al. 2017. A metabolic pathway for catabolizing levulinic acid in bacteria. Nat. Microbiol. 2: 1624-1634. https://doi.org/10.1038/s41564-017-0028-z
- Qian Y, Huang H-H, Jimenez JI, Del Vecchio D. 2017. Resource competition shapes the response of genetic circuits. ACS Synth. Biol. 6: 1263-1272. https://doi.org/10.1021/acssynbio.6b00361
- Morey KJ, Antunes MS, Barrow MJ, Solorzano FA, Havens KL, Smith JJ, et al. 2012. Crosstalk between endogenous and synthetic components - synthetic signaling meets endogenous components. Biotechnol. J. 7: 846-855. https://doi.org/10.1002/biot.201100487
- Ankenbauer A, Schafer RA, Viegas SC, Pobre V, Voss B, Arraiano CM, et al. 2020. Pseudomonas putida KT2440 is naturally endowed to withstand industrial-scale stress conditions. Microb. Biotechnol. 13: 1145-1161. https://doi.org/10.1111/1751-7915.13571
- Martinez-Garcia E, de Lorenzo V. 2011. Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ. Microbiol. 13: 2702-2716. https://doi.org/10.1111/j.1462-2920.2011.02538.x
- Ochab-Marcinek A, Tabaka M. 2010. Bimodal gene expression in noncooperative regulatory systems. Proc. Natl. Acad. Sci. USA 107: 22096-22101. https://doi.org/10.1073/pnas.1008965107
- Shu CC, Chatterjee A, Dunny G, Hu W-S, Ramkrishna D. 2011. Bistability versus bimodal distributions in gene regulatory processes from population balance. PLoS Comput. Biol. 7: e1002140.