DOI QR코드

DOI QR Code

A Genetically Encoded Biosensor for the Detection of Levulinic Acid

  • Tae Hyun Kim (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Seung-Gyun Woo (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Seong Keun Kim (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Byeong Hyeon Yoo (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Jonghyeok Shin (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Eugene Rha (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Soo Jung Kim (Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University) ;
  • Kil Koang Kwon (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Hyewon Lee (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Haseong Kim (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Hee-Taek Kim (Department of Food Science and Technology, Chungnam National University) ;
  • Bong-Hyun Sung (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Seung-Goo Lee (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Dae-Hee Lee (Synthetic Biology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 투고 : 2023.01.13
  • 심사 : 2023.01.20
  • 발행 : 2023.04.28

초록

Levulinic acid (LA) is a valuable chemical used in fuel additives, fragrances, and polymers. In this study, we proposed possible biosynthetic pathways for LA production from lignin and poly(ethylene terephthalate). We also created a genetically encoded biosensor responsive to LA, which can be used for screening and evolving the LA biosynthesis pathway genes, by employing an LvaR transcriptional regulator of Pseudomonas putida KT2440 to express a fluorescent reporter gene. The LvaR regulator senses LA as a cognate ligand. The LA biosensor was first examined in an Escherichia coli strain and was found to be non-functional. When the host of the LA biosensor was switched from E. coli to P. putida KT2440, the LA biosensor showed a linear correlation between fluorescence intensity and LA concentration in the range of 0.156-10 mM LA. In addition, we determined that 0.156 mM LA was the limit of LA detection in P. putida KT2440 harboring an LA-responsive biosensor. The maximal fluorescence increase was 12.3-fold in the presence of 10 mM LA compared to that in the absence of LA. The individual cell responses to LA concentrations reflected the population-averaged responses, which enabled high-throughput screening of enzymes and metabolic pathways involved in LA biosynthesis and sustainable production of LA in engineered microbes.

키워드

과제정보

This research was funded by the Bio & Medical Technology Development Program [grant numbers 2020M3A9I5037641 and 2021M3A9I4022731] of the National Research Foundation, funded by the Ministry of Science and ICT of the Republic of Korea and the KRIBB Research Initiative Program [grant number KGM5402322].

참고문헌

  1. van der Waal JC, de Jong E. 2016. Avantium chemicals: The high potential for the levulinic product tree, pp. 97-120. Industrial Biorenewables, Ed.
  2. Werpy T, Petersen G. 2004. Top value added chemicals from biomass (U.S. Department of Energy)
  3. Gorenflo V, Schmack G, Vogel R, Steinbuchel A. 2001. Development of a process for the biotechnological large-scale production of 4-hydroxyvalerate-containing polyesters and characterization of their physical and mechanical properties. Biomacromolecules 2: 45-57. https://doi.org/10.1021/bm0000992
  4. Hazer B, Steinbuchel A. 2007. Increased diversification of polyhydroxyalkanoates by modification reactions for industrial and medical applications. Appl. Microbiol. Biotechnol. 74: 1-12. https://doi.org/10.1007/s00253-006-0732-8
  5. Attwood D, Booth C, Yeates SG, Chaibundit C, Ricardo NMPS. 2007. Block copolymers for drug solubilisation: relative hydrophobicities of polyether and polyester micelle-core-forming blocks. Int. J. Pharm. 345: 35-41. https://doi.org/10.1016/j.ijpharm.2007.07.039
  6. Chang YC, Chu IM. 2008. Methoxy poly(ethylene glycol)-β-poly(valerolactone) diblock polymeric micelles for enhanced encapsulation and protection of camptothecin. Eur. Polym. J. 44: 3922-3930. https://doi.org/10.1016/j.eurpolymj.2008.09.021
  7. Alonso DM, Wettstein SG, Dumesic JA. 2013. Gamma-valerolactone, a sustainable platform molecule derived from lignocellulosic biomass. Green Chem. 15: 584-595. https://doi.org/10.1039/c3gc37065h
  8. Manzer LE. 2004. Catalytic synthesis of α-methylene-γ-valerolactone: a biomass-derived acrylic monomer. Appl. Catal. A: General. 272: 249-256. https://doi.org/10.1016/j.apcata.2004.05.048
  9. Isoni V, Kumbang D, Sharratt PN, Khoo HH. 2018. Biomass to levulinic acid: a techno-economic analysis and sustainability of biorefinery processes in Southeast Asia. J. Environ. Manag. 214: 267-275. https://doi.org/10.1016/j.jenvman.2018.03.012
  10. Hayes DJ, Fitzpatrick S, Hayes MHB, Ross JRH. 2005. The biofine process - production of levulinic acid, furfural, and formic acid from lignocellulosic feedstocks, pp. 139-164. Biorefineries-Industrial Processes and Products, Ed.
  11. Alonso DM, Hakim SH, Zhou S, Won W, Hosseinaei O, Tao J, et al. 2017. Increasing the revenue from lignocellulosic biomass: Maximizing feedstock utilization. Sci. Adv. 3: e1603301.
  12. Audemar M, Ciotonea C, De Oliveira Vigier K, Royer S, Ungureanu A, Dragoi B, et al. 2015. Selective hydrogenation of furfural to furfuryl alcohol in the presence of a recyclable cobalt/SBA-15 catalyst. ChemSusChem 8: 1885-1891. https://doi.org/10.1002/cssc.201403398
  13. Mellmer MA, Gallo JMR, Martin Alonso D, Dumesic JA. 2015. Selective production of levulinic acid from furfuryl alcohol in thf solvent systems over H-ZSM-5. ACS Catal. 5: 3354-3359. https://doi.org/10.1021/acscatal.5b00274
  14. Morone A, Apte M, Pandey RA. 2015. Levulinic acid production from renewable waste resources: Bottlenecks, potential remedies, advancements and applications. Renew. Sustain. Energ. Rev. 51: 548-565. https://doi.org/10.1016/j.rser.2015.06.032
  15. Vila-Santa A, Islam MA, Ferreira FC, Prather KLJ, Mira NP. 2021. Prospecting biochemical pathways to implement microbe-based production of the new-to-nature platform chemical levulinic acid. ACS Synth. Biol. 10: 724-736. https://doi.org/10.1021/acssynbio.0c00518
  16. Binder S, Schendzielorz G, Stabler N, Krumbach K, Hoffmann K, Bott M, et al. 2012. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biol. 13: R40.
  17. Jha RK, Kern TL, Fox DT, CE MS. 2014. Engineering an Acinetobacter regulon for biosensing and high-throughput enzyme screening in E. coli via flow cytometry. Nucleic Acids Res. 42: 8150-8160. https://doi.org/10.1093/nar/gku444
  18. Kim SK, Kim SH, Subhadra B, Woo S-G, Rha E, Kim S-W, et al. 2018. A genetically encoded biosensor for monitoring isoprene production in engineered Escherichia coli. ACS Synth. Biol. 7: 2379-2390. https://doi.org/10.1021/acssynbio.8b00164
  19. Siedler S, Stahlhut SG, Malla S, Maury J, Neves AR. 2014. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metab. Eng. 21: 2-8. https://doi.org/10.1016/j.ymben.2013.10.011
  20. Yeom S-J, Kim M, Kwon KK, Fu Y, Rha E, Park S-H, et al. 2018. A synthetic microbial biosensor for high-throughput screening of lactam biocatalysts. Nat. Commun. 9: 5053.
  21. Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, et al. 2000. Production of levulinic acid and use as a platform chemical for derived products. Resour. , Conserv. Recycl. 28: 227-239. https://doi.org/10.1016/S0921-3449(99)00047-6
  22. Yoshida S, Hiraga K, Takehana T, Taniguchi I, Yamaji H, Maeda Y, et al. 2016. A bacterium that degrades and assimilates poly(ethylene terephthalate). Science 351: 1196-1199. https://doi.org/10.1126/science.aad6359
  23. Lu H, Diaz DJ, Czarnecki NJ, Zhu C, Kim W, Shroff R, et al. 2022. Machine learning-aided engineering of hydrolases for PET depolymerization. Nature 604: 662-667. https://doi.org/10.1038/s41586-022-04599-z
  24. Sasoh M, Masai E, Ishibashi S, Hara H, Kamimura N, Miyauchi K, et al. 2006. Characterization of the terephthalate degradation genes of Comamonas sp. strain E6. Appl. Environ. Microbiol. 72: 1825-1832. https://doi.org/10.1128/AEM.72.3.1825-1832.2006
  25. Pardo I, Jha RK, Bermel RE, Bratti F, Gaddis M, McIntyre E, et al. 2020. Gene amplification, laboratory evolution, and biosensor screening reveal MucK as a terephthalic acid transporter in Acinetobacter baylyi ADP1. Metab. Eng. 62: 260-274. https://doi.org/10.1016/j.ymben.2020.09.009
  26. Reshmy R, Athiyaman Balakumaran P, Divakar K, Philip E, Madhavan A, Pugazhendhi A, et al. 2022. Microbial valorization of lignin: Prospects and challenges. Bioresour. Technol. 344: 126240.
  27. Chio C, Sain M, Qin W. 2019. Lignin utilization: A review of lignin depolymerization from various aspects. Renew. Sust. Energ. Rev. 107: 232-249. https://doi.org/10.1016/j.rser.2019.03.008
  28. Kumar A, Anushree, Kumar J, Bhaskar T. 2020. Utilization of lignin: A sustainable and eco-friendly approach. J. Energy Inst.93: 235-271. https://doi.org/10.1016/j.joei.2019.03.005
  29. Borchert AJ, Henson WR, Beckham GT. 2022. Challenges and opportunities in biological funneling of heterogeneous and toxic substrates beyond lignin. Curr. Opin. Biotechnol. 73: 1-13. https://doi.org/10.1016/j.copbio.2021.06.007
  30. Rand JM, Pisithkul T, Clark RL, Thiede JM, Mehrer CR, Agnew DE, et al. 2017. A metabolic pathway for catabolizing levulinic acid in bacteria. Nat. Microbiol. 2: 1624-1634. https://doi.org/10.1038/s41564-017-0028-z
  31. Qian Y, Huang H-H, Jimenez JI, Del Vecchio D. 2017. Resource competition shapes the response of genetic circuits. ACS Synth. Biol. 6: 1263-1272. https://doi.org/10.1021/acssynbio.6b00361
  32. Morey KJ, Antunes MS, Barrow MJ, Solorzano FA, Havens KL, Smith JJ, et al. 2012. Crosstalk between endogenous and synthetic components - synthetic signaling meets endogenous components. Biotechnol. J. 7: 846-855. https://doi.org/10.1002/biot.201100487
  33. Ankenbauer A, Schafer RA, Viegas SC, Pobre V, Voss B, Arraiano CM, et al. 2020. Pseudomonas putida KT2440 is naturally endowed to withstand industrial-scale stress conditions. Microb. Biotechnol. 13: 1145-1161. https://doi.org/10.1111/1751-7915.13571
  34. Martinez-Garcia E, de Lorenzo V. 2011. Engineering multiple genomic deletions in Gram-negative bacteria: analysis of the multi-resistant antibiotic profile of Pseudomonas putida KT2440. Environ. Microbiol. 13: 2702-2716. https://doi.org/10.1111/j.1462-2920.2011.02538.x
  35. Ochab-Marcinek A, Tabaka M. 2010. Bimodal gene expression in noncooperative regulatory systems. Proc. Natl. Acad. Sci. USA 107: 22096-22101. https://doi.org/10.1073/pnas.1008965107
  36. Shu CC, Chatterjee A, Dunny G, Hu W-S, Ramkrishna D. 2011. Bistability versus bimodal distributions in gene regulatory processes from population balance. PLoS Comput. Biol. 7: e1002140.