DOI QR코드

DOI QR Code

Applications of Bioinspired Platforms for Enhancing Immunomodulatory Function of Mesenchymal Stromal Cells

  • Ok-Hyeon Kim (Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University) ;
  • Tae Jin Jeon (Department of Global Innovative Drugs, Graduate School of Chung-Ang University) ;
  • Young In So (Department of Global Innovative Drugs, Graduate School of Chung-Ang University) ;
  • Yong Kyoo Shin (Department of Pharmacology, College of Medicine, Chung-Ang University) ;
  • Hyun Jung Lee (Department of Anatomy and Cell Biology, College of Medicine, Chung-Ang University)
  • Received : 2022.12.30
  • Accepted : 2023.03.28
  • Published : 2023.08.30

Abstract

Mesenchymal stromal cells (MSCs) have attracted scientific and medical interest due to their self-renewing properties, pluripotency, and paracrine function. However, one of the main limitations to the clinical application of MSCs is their loss of efficacy after transplantation in vivo. Various bioengineering technologies to provide stem cell niche-like conditions have the potential to overcome this limitation. Here, focusing on the stem cell niche microenvironment, studies to maximize the immunomodulatory potential of MSCs by controlling biomechanical stimuli, including shear stress, hydrostatic pressure, stretch, and biophysical cues, such as extracellular matrix mimetic substrates, are discussed. The application of biomechanical forces or biophysical cues to the stem cell microenvironment will be beneficial for enhancing the immunomodulatory function of MSCs during cultivation and overcoming the current limitations of MSC therapy.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF), funded by the Korean government [grant number 2020R1A2C2011617]; and by the Chung-Ang University Scholarship Grant in 2022.

References

  1. Reinisch A, Etchart N, Thomas D, Hofmann NA, Fruehwirth M, Sinha S, Chan CK, Senarath-Yapa K, Seo EY, Wearda T, Hartwig UF, Beham-Schmid C, Trajanoski S, Lin Q, Wagner W, Dullin C, Alves F, Andreeff M, Weissman IL, Longaker MT, Schallmoser K, Majeti R, Strunk D. Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation. Blood 2015;125:249-260 
  2. Lee S, Kim HS, Min BH, Kim BG, Kim SA, Nam H, Lee M, Kim M, Hwang HY, Leesong AI, Leesong MM, Kim JH, Shin JS. Enhancement of anti-inflammatory and immunomodulatory effects of adipose-derived human mesenchymal stem cells by making uniform spheroid on the new nano-patterned plates. Biochem Biophys Res Commun 2021;552:164-169 
  3. Chen Y, Shu Z, Qian K, Wang J, Zhu H. Harnessing the properties of biomaterial to enhance the immunomodulation of mesenchymal stem cells. Tissue Eng Part B Rev 2019;25:492-499 
  4. Gan L, Liu Y, Cui D, Pan Y, Zheng L, Wan M. Dental tissue-derived human mesenchymal stem cells and their potential in therapeutic application. Stem Cells Int 2020;2020:8864572 
  5. Schofield R. The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 1978;4:7-25 
  6. Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 2007;9:204 
  7. Pittenger MF, Discher DE, Peault BM, Phinney DG, Hare JM, Caplan AI. Mesenchymal stem cell perspective: cell biology to clinical progress. NPJ Regen Med 2019;4:22 
  8. Hazrati A, Malekpour K, Soudi S, Hashemi SM. Mesenchymal stromal/stem cells spheroid culture effect on the therapeutic efficacy of these cells and their exosomes: a new strategy to overcome cell therapy limitations. Biomed Pharmacother 2022;152:113211 
  9. Diaz MF, Vaidya AB, Evans SM, Lee HJ, Aertker BM, Alexander AJ, Price KM, Ozuna JA, Liao GP, Aroom KR, Xue H, Gu L, Omichi R, Bedi S, Olson SD, Cox CS Jr, Wenzel PL. Biomechanical forces promote immune regulatory function of bone marrow mesenchymal stromal cells. Stem Cells 2017;35:1259-1272 
  10. Chiu JJ, Chien S. Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 2011;91:327-387 
  11. Zhang Y, Yu J, Bomba HN, Zhu Y, Gu Z. Mechanical force-triggered drug delivery. Chem Rev 2016;116:12536-12563 
  12. Kim TJ, Joo C, Seong J, Vafabakhsh R, Botvinick EL, Berns MW, Palmer AE, Wang N, Ha T, Jakobsson E, Sun J, Wang Y. Distinct mechanisms regulating mechanical force-induced Ca2+ signals at the plasma membrane and the ER in human MSCs. Elife 2015;4:e04876 
  13. Sun Y, Chen CS, Fu J. Forcing stem cells to behave: a biophysical perspective of the cellular microenvironment. Annu Rev Biophys 2012;41:519-542 
  14. Kornuta JA, Nepiyushchikh Z, Gasheva OY, Mukherjee A, Zawieja DC, Dixon JB. Effects of dynamic shear and transmural pressure on wall shear stress sensitivity in collecting lymphatic vessels. Am J Physiol Regul Integr Comp Physiol 2015;309:R1122-R1134 
  15. English K. Mechanisms of mesenchymal stromal cell immunomodulation. Immunol Cell Biol 2013;91:19-26 
  16. Lee HJ, Diaz MF, Ewere A, Olson SD, Cox CS Jr, Wenzel PL. Focal adhesion kinase signaling regulates anti-inflammatory function of bone marrow mesenchymal stromal cells induced by biomechanical force. Cell Signal 2017;38:1-9 
  17. Santos JM, Camoes SP, Filipe E, Cipriano M, Barcia RN, Filipe M, Teixeira M, Simoes S, Gaspar M, Mosqueira D, Nascimento DS, Pinto-do-O P, Cruz P, Cruz H, Castro M, Miranda JP. Three-dimensional spheroid cell culture of umbilical cord tissue-derived mesenchymal stromal cells leads to enhanced paracrine induction of wound healing. Stem Cell Res Ther 2015;6:90 
  18. Mizukami A, Fernandes-Platzgummer A, Carmelo JG, Swiech K, Covas DT, Cabral JM, da Silva CL. Stirred tank bioreactor culture combined with serum-/xenogeneic-free culture medium enables an efficient expansion of umbilical cord-derived mesenchymal stem/stromal cells. Biotechnol J 2016;11:1048-1059 
  19. Seifert M, Lubitz A, Trommer J, Konnig D, Korus G, Marx U, Volk HD, Duda G, Kasper G, Lehmann K, Stolk M, Giese C. Crosstalk between immune cells and mesenchymal stromal cells in a 3D bioreactor system. Int J Artif Organs 2012;35:986-995 
  20. Charras G, Yap AS. Tensile forces and mechanotransduction at cell-cell junctions. Curr Biol 2018;28:R445-R457 
  21. Camasao DB, Mantovani D. The mechanical characterization of blood vessels and their substitutes in the continuous quest for physiological-relevant performances. A critical review. Mater Today Bio 2021;10:100106 
  22. Castillo AB, Jacobs CR. Mesenchymal stem cell mechanobiology. Curr Osteoporos Rep 2010;8:98-104 
  23. Falcones B, Soderlund Z, Ibanez-Fonseca A, Almendros I, Otero J, Farre R, Rolandsson Enes S, Elowsson Rendin L, Westergren-Thorsson G. hLMSC secretome affects macrophage activity differentially depending on lung-mimetic environments. Cells 2022;11:1866 
  24. Sumanasinghe RD, Pfeiler TW, Monteiro-Riviere NA, Loboa EG. Expression of proinflammatory cytokines by human mesenchymal stem cells in response to cyclic tensile strain. J Cell Physiol 2009;219:77-83 
  25. Yang M, Xiao LW, Liao EY, Wang QJ, Wang BB, Lei JX. The role of integrin-β/FAK in cyclic mechanical stimulation in MG-63 cells. Int J Clin Exp Pathol 2014;7:7451-7459 
  26. Wu Y, van der Schaft DWJ, Baaijens FP, Oomens CWJ. Cell death induced by mechanical compression on engineered muscle results from a gradual physiological mechanism. J Biomech 2016;49:1071-1077 
  27. Stover J, Nagatomi J. Cyclic pressure stimulates DNA synthesis through the PI3K/Akt signaling pathway in rat bladder smooth muscle cells. Ann Biomed Eng 2007;35:1585-1594 
  28. Zimmerman AM, Marsland D. Cell division: effects of pressure on the mitotic mechanisms of marine eggs (Arbacia punctulata). Exp Cell Res 1964;35:293-302 
  29. Park J, Jia S, Salter D, Bagnaninchi P, Hansen CG. The Hippo pathway drives the cellular response to hydrostatic pressure. EMBO J 2022;41:e108719 
  30. Sugimoto A, Miyazaki A, Kawarabayashi K, Shono M, Akazawa Y, Hasegawa T, Ueda-Yamaguchi K, Kitamura T, Yoshizaki K, Fukumoto S, Iwamoto T. Piezo type mechanosensitive ion channel component 1 functions as a regulator of the cell fate determination of mesenchymal stem cells. Sci Rep 2017;7:17696 
  31. Stavenschi E, Corrigan MA, Johnson GP, Riffault M, Hoey DA. Physiological cyclic hydrostatic pressure induces osteogenic lineage commitment of human bone marrow stem cells: a systematic study. Stem Cell Res Ther 2018;9:276 
  32. Yu W, Chen C, Kou X, Sui B, Yu T, Liu D, Wang R, Wang J, Shi S. Mechanical force-driven TNFα endocytosis governs stem cell homeostasis. Bone Res 2021;8:44 
  33. Ghaemi SR, Harding FJ, Delalat B, Gronthos S, Voelcker NH. Exploring the mesenchymal stem cell niche using high throughput screening. Biomaterials 2013;34:7601-7615 
  34. Novoseletskaya E, Grigorieva O, Nimiritsky P, Basalova N, Eremichev R, Milovskaya I, Kulebyakin K, Kulebyakina M, Rodionov S, Omelyanenko N, Efimenko A. Mesenchymal stromal cell-produced components of extracellular matrix potentiate multipotent stem cell response to differentiation stimuli. Front Cell Dev Biol 2020;8:555378 
  35. Bartosh TJ, Ylostalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, Lee RH, Choi H, Prockop DJ. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci USA 2010;107:13724-13729 
  36. Xie L, Mao M, Zhou L, Zhang L, Jiang B. Signal factors secreted by 2D and spheroid mesenchymal stem cells and by cocultures of mesenchymal stem cells derived microvesicles and retinal photoreceptor neurons. Stem Cells Int 2017;2017:2730472 
  37. Ylostalo JH, Bazhanov N, Mohammadipoor A, Bartosh TJ. Production and administration of therapeutic mesenchymal stem/stromal cell (MSC) spheroids primed in 3-D cultures under xeno-free conditions. J Vis Exp 2017;(121):55126 
  38. Camoes SP, Bulut O, Yazar V, Gaspar MM, Simoes S, Ferreira R, Vitorino R, Santos JM, Gursel I, Miranda JP. 3D-MSCs A151 ODN-loaded exosomes are immunomodulatory and reveal a proteomic cargo that sustains wound resolution. J Adv Res 2022;41:113-128 
  39. von der Mark K, Park J, Bauer S, Schmuki P. Nanoscale engineering of biomimetic surfaces: cues from the extracellular matrix. Cell Tissue Res 2010;339:131-153 
  40. Li Y, Wu Q, Wang Y, Li L, Chen F, Shi Y, Bu H, Bao J. Immunogenicity of hepatic differentiated human umbilical cord mesenchymal stem cells promoted by porcine decellularized liver scaffolds. Xenotransplantation 2017;24:e12287 
  41. Mk MV, Krishna B, Sampath S. Secular trends in an Indian intensive care unit-database derived epidemiology: the stride study. Indian J Crit Care Med 2019;23:251-257 
  42. Kim OH, Park JH, Son JI, Yoon OJ, Lee HJ. Bone marrow mesenchymal stromal cells on silk fibroin scaffolds to attenuate polymicrobial sepsis induced by cecal ligation and puncture. Polymers (Basel) 2021;13:1433 
  43. Kim OH, Yoon OJ, Lee HJ. Silk fibroin scaffolds potentiate immunomodulatory function of human mesenchymal stromal cells. Biochem Biophys Res Commun 2019;519:323-329 
  44. Dong L, Li L, Song Y, Fang Y, Liu J, Chen P, Wang S, Wang C, Xia T, Liu W, Yang L. MSC-derived immunomodulatory extracellular matrix functionalized electrospun fibers for mitigating foreign-body reaction and tendon adhesion. Acta Biomater 2021;133:280-296 
  45. Su N, Gao PL, Wang K, Wang JY, Zhong Y, Luo Y. Fibrous scaffolds potentiate the paracrine function of mesenchymal stem cells: a new dimension in cell-material interaction. Biomaterials 2017;141:74-85 
  46. Valles G, Bensiamar F, Crespo L, Arruebo M, Vilaboa N, Saldana L. Topographical cues regulate the crosstalk between MSCs and macrophages. Biomaterials 2015;37:124-133 
  47. Wan S, Fu X, Ji Y, Li M, Shi X, Wang Y. FAK- and YAP/TAZ dependent mechanotransduction pathways are required for enhanced immunomodulatory properties of adipose-derived mesenchymal stem cells induced by aligned fibrous scaffolds. Biomaterials 2018;171:107-117 
  48. Li J, Chen T, Huang X, Zhao Y, Wang B, Yin Y, Cui Y, Zhao Y, Zhang R, Wang X, Wang Y, Dai J. Substrate-independent immunomodulatory characteristics of mesenchymal stem cells in three-dimensional culture. PLoS One 2018;13:e0206811 
  49. Wong SW, Lenzini S, Cooper MH, Mooney DJ, Shin JW. Soft extracellular matrix enhances inflammatory activation of mesenchymal stromal cells to induce monocyte production and trafficking. Sci Adv 2020;6:eaaw0158 
  50. Darnell M, Gu L, Mooney D. RNA-seq reveals diverse effects of substrate stiffness on mesenchymal stem cells. Biomaterials 2018;181:182-188 
  51. Murphy KC, Whitehead J, Zhou D, Ho SS, Leach JK. Engineering fibrin hydrogels to promote the wound healing potential of mesenchymal stem cell spheroids. Acta Biomater 2017;64:176-186 
  52. Roger Y, Schack LM, Koroleva A, Noack S, Kurselis K, Krettek C, Chichkov B, Lenarz T, Warnecke A, Hoffmann A. Grid-like surface structures in thermoplastic polyurethane induce anti-inflammatory and anti-fibrotic processes in bone marrow-derived mesenchymal stem cells. Colloids Surf B Biointerfaces 2016;148:104-115 
  53. Li M, Wei F, Yin X, Xiao L, Yang L, Su J, Weng J, Feng B, Xiao Y, Zhou Y. Synergistic regulation of osteoimmune microenvironment by IL-4 and RGD to accelerate osteogenesis. Mater Sci Eng C Mater Biol Appl 2020;109:110508