DOI QR코드

DOI QR Code

The Effect of Blue Light Interception and SPF Boosting of Sunscreen Prepared with Bandgap-controlled TiO2

밴드갭이 제어된 TiO2 를 이용한 자외선 차단제의 블루라이트 차단 및 SPF 부스팅 효과

  • Sung Eun Wang (Energy Storage Materials Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Jung Kyung Yoon (HK Kolmar) ;
  • Gui Su Chung (Bluban) ;
  • Sung Bong Kye (Department of Chemical and Material Engineering, The University of Suwon) ;
  • Ho Sik Rho (Department of Chemical and Material Engineering, The University of Suwon) ;
  • Dae Soo Jung (Energy Storage Materials Center, Korea Institute of Ceramic Engineering and Technology)
  • Received : 2023.05.12
  • Accepted : 2023.06.30
  • Published : 2023.06.30

Abstract

Titanium dioxide (TiO2) is commonly used in sunscreen formulations to protect the skin surface and prevent the penetration of harmful ultraviolet (UV) rays by the physical scattering action of light. However, a disadvantage of using TiO2 is that it can cause white turbidity when used on skin due to its inactive mineral ingredient. In addition, when TiO2 particles are reduced to nanosize to eliminate opacity, they can increase the transmittance of visible light and reduce whitening, but may lead to serious skin problems, such as allergic inflammation. To overcome these issues, the bandgap of TiO2 was controlled by adjusting the amount of oxygen defect and nitrogen amount, resulting in color TiO2 tailored to the skin. This innovative technology can reduce the whitening phenomenon and effectively block blue light, which is known to cause skin aging by inducing active oxygen. The bandgap controlled TiO2 compounds proposed in this study are hypoallergenic, broad-spectrum, and environmentally friendly. Furthermore, these compounds have been shown to significantly enhance sun protection factor (SPF) of sunscreens, demonstrating their compatibility with blue light blocking products.

이산화티타늄(TiO2)은 일반적으로 선크림 제제에 사용되어 빛의 물리적 산란 작용에 의해 피부 표면을 보호하고 유해한 자외선(UV)의 침투를 방지한다. 그러나 불활성 미네랄 성분으로 인해 피부에 사용시 백탁현상을 유발할 수 있다는 단점이 있다. 또한 백탁현상을 없애기 위해 TiO2 입자를 나노화 하면 가시광선 투과율을 증가시켜 백탁 현상을 감소시키지만 알레르기 염증과 같은 심각한 피부 트러블을 유발할 수 있다. 이러한 문제를 극복하기 위해 본 연구에서는 산소 결핍 구조 및 질소량 제어를 이용하여 TiO2의 밴드갭을 제어하고, 결과적으로 피부 맞춤형 유색 TiO2를 개발하였다. 이는 백탁 현상을 감소시킬 수 있을 뿐만 아니라 활성산소를 유발하여 피부 노화를 촉진시키는 것으로 알려진 블루라이트를 효과적으로 차단할 수 있다. 본 연구에서 제안된 밴드갭 제어 TiO2 화합물은 저자극이고 스펙트럼이 넓으며 환경친화적이다. 또한 이는 자외선 차단제의 sun protection factor (SPF)를 획기적으로 향상시켜 블루라이트 차단 제품에 적용할 수 있을 것으로 기대된다.

Keywords

Acknowledgement

This work was supported by Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE) (20215610100040) and National R&D Program through the National Research Foundation of Korea (NRF) funded by Ministry of Science and ICT (2021M3H4A3A02086100).

References

  1. N. Kollias, E. Ruvolo, Jr., and R.M. Sayre, The value of the ratio of UVA to UVB in sunlight, Photochem. Photobiol., 87(6), 1474 (2011).
  2. K. Nishimura, H. Ikehata, T. Douki, J. Cadet, S. Sugiura, and T. Mori, Seasonal differences in the UVA/UVB ratio of natural sunlight influence the efficiency of the photoisomerization of (6-4) photoproducts into their dewar valence isomers, Photochem. Photobiol., 97(3), 582 (2021).
  3. A. Mahns, R. Wolber, F. Stab, L. O. Klotz, and H. Sies, Contribution of UVB and UVA to UV-dependent stimulation of cyclooxygenase-2 expression in artificial epidermis, Photochem. Photobiol. Sci., 3(3), 257 (2004).
  4. D. E. Heck, D. R. Gerecke, A. M. Vetrano, and J. D. Laskin, Solar ultraviolet radiation as a trigger of cell signal transduction, Toxicol. Appl. Pharmacol., 195(3), 288 (2004).
  5. R. Chadysiene, R. Girgzdiene, and A. Girgzdys, Ultraviolet radiation and ground-level ozone variation in lithuania, J. Environ. Eng. Landsc. Manag., 11(1), 31 (2005).
  6. Y. Kuse, K. Ogawa, K. Tsuruma, M. Shimazawa, and H. Hara, Damage of photoreceptor-derived cells in culture induced by light emitting diode-derived blue light, Sci. Rep., 4, 5223 (2014).
  7. K. Morabito, N. C. Shapley, and K. G. Steeley, A. Tripathi, Review of sunscreen and the emergence of non-conventional absorbers and their applications in ultraviolet protection, Int. J. Cosmet. Sci., 33(5), 385 (2011).
  8. A. P. Popov, A. V. Priezzhev, J. Lademann, and R. Myllyla, TiO2 nanoparticles as an effective UV-B radiation skin-protective compound in sunscreens, J. Phys. D, 38(15), 2564 (2005).
  9. J. S. Barbosa, D. M. A. Neto, R. M. Freire, J. S. Rocha, L. Fechine, J. C. Denardin, A. Valentini, T. G. de Araujo, S. E. Mazzetto, and P. B. A. Fechine, Ultrafast sonochemistry-based approach to coat TiO2 commercial particles for sunscreen formulation, Ultrason. Sonochem., 48, 340 (2018).
  10. A. Siller, S. C. Blaszak, M. Lazar, and E. Olasz Harken, Update About the Effects of the Sunscreen Ingredients Oxybenzone and Octinoxate on Humans and the Environment, Plast. Surg. Nurs., 38(4),158 (2018).
  11. J. H. Park, S. U. Chung, S. E. Lee, S. Y. Choi, K. K. Moon, S. R. Lim, and H. K. Kim, The blocking effect of sunscreen materials on blue light, J. Soc. Cosmet. Sci. Korea, 44(2), 183 (2018).
  12. B. Bocca, S. Caimi, O. Senofonte, A. Alimonti, and F. Petrucci, ICP-MS based methods to characterize nanoparticles of TiO2 and ZnO in sunscreens with focus on regulatory and safety issues, Sci. Total. Environ., 630, 922 (2018).
  13. T. S. de Araujo, S. O. de Souza, and E. M. B. de Sousa, Effect of Zn2+, Fe3+ and Cr3+ addition to hydroxyapatite for its application as an active constituent of sunscreens, J. Phys. Conf. Ser., 249, 012012 (2010).
  14. B. Dreno, A. Alexis, B. Chuberre, and M. Marinovich, Safety of titanium dioxide nanoparticles in cosmetics, J. Eur. Acad. Dermatol. Venereol., 33(7), 34 (2019).
  15. C. Contado and A. Pagnoni, TiO2 in commercial sunscreen lotion: flow field-flow fractionation and ICP-AES together for size analysis, Anal. Chemm., 80, 7594 (2008).
  16. K. M. Tyner, A. M. Wokovich, D. E. Godar, W. H. Doub, and N. Sadrieh, The state of nano-sized titanium dioxide (TiO2) may affect sunscreen performance, Int. J. Cosmet. Sci., 33(3), 234 (2011).
  17. D. A. Basketter, M. Chamberlain, H. A. Griffiths, M. Rowson, E. Whittle, and M. York, The classification of skin irritants by human patch test, Food Chem. Toxicol., 35(8), 845 (1997).
  18. S. G. Seo, C. H. Park, H. Y. Kim, W. H. Nam, M. Jeong, Y. N. Choi, Y. S. Lim, W. S. Seo, S. J. Kim, J. Y. Lee, and Y. S. Cho, Preparation and visible-light photocatalysis of hollow rock-salt TiO1-xNx nanoparticles, J. Mater. Chem., 1(11), 3639 (2013).
  19. J. C. Seitz and C. G. Whitmore, Measurement of erythema and tanning responses in human skin using a tri-stimulus colorimeter, Clin. Lab., 177(2), 70 (1988).
  20. R. Shukla, A. Dubey, V. Pandey, D. Golhani, and A. P. Jain, Chromophore- an utility in UV spectrophotometer, Inventi Rapid: Pharm Ana. & Qual Assur, 2012(3), 1 (2012).
  21. M. Janczarek and E. Kowalska, On the origin of enhanced photocatalytic activity of copper-modified titania in the oxidative reaction systems, Catalysts, 7(11), 317 (2017).
  22. A. Kubacka, G. Colon, and M. Fernandez-Garcia, Cationic (V, Mo, Nb, W) doping of TiO2-anatase: A real alternative for visible light-driven photocatalysts, Catal. Today, 143(3-4), 286 (2009).