DOI QR코드

DOI QR Code

Chemical Durability Test of Thin Membrane in Proton Exchange Membrane Fuel Cells

고분자전해질 연료전지에서 박막의 화학적 내구성 평가

  • Sohyeong Oh (Department of Chemical Engineering, Sunchon National University) ;
  • Donggeun Yoo (Department of Chemical Engineering, Sunchon National University) ;
  • Sunggi Jung (SANG-A FRONTEC CO.Ltd) ;
  • Jihong Jeong (SANG-A FRONTEC CO.Ltd) ;
  • Kwonpil Park (Department of Chemical Engineering, Sunchon National University)
  • 오소형 (순천대학교 화학공학과) ;
  • 유동근 (순천대학교 화학공학과) ;
  • 정성기 ((주)상아프론테크 연구개발부2) ;
  • 정지홍 ((주)상아프론테크 연구개발부2) ;
  • 박권필 (순천대학교 화학공학과)
  • Received : 2023.05.30
  • Accepted : 2023.07.13
  • Published : 2023.08.01

Abstract

Recently, research and development of proton exchange membrane fuel cells (PEMFC) membranes are progressing in the direction of thinning to reduce prices and improve performance. Demand for hydrogen-powered vehicles for commercial vehicles is also increasing, and their durability should be five times greater than those for passenger vehicles. Despite the thinning of the membranes, the durability of the membranes must be increased five times, so the improvement of the durability of the membranes has become more important. Since the acceleration durability evaluation time also needs to be shortened, the protocol using oxygen instead of air in the existing protocol was applied to a 10 ㎛ thin membrane to evaluate durability. The accelerated durability test (Open circuit voltage holding) was terminated at 720 hours. If the air-based department of energy (DOE) protocol was used, a lifespan of 450,000 km of driving hours would be expected, with a durability of about 1,500 hours. During the chemical durability evaluation, the active area of the electrode decreased by 51%, suggesting that catalyst degradation had an effect on membrane durability. Reducing the catalyst degradation rate is expected to increase membrane durability.

최근 고분자 전해질 연료전지(PEMFC)에서 고분자 막의 연구개발은 가격 저감과 성능 향상을 위해 박막화하는 방향으로 진행되고 있다. 그리고 상용차용 수소 전기 차량 수요가 증가하고 있는데, 승용차용보다 내구성이 5배 증가해야 한다. 막의 두께가 얇아짐에도 불구하고 내구성은 5배 증가해야 하므로, 막의 내구성 향상이 더 중요해진 상황이다. 가속 내구 평가 시간도 단축해야하기 때문에 기존 프로토콜에서 공기 대신 산소를 사용한 프로토콜을 10 ㎛ 박막에 적용해 내구성을 평가하였다. 가속 내구 평가(개회로 전압 유지)는 720시간에 종료하였다. 공기를 사용한 미국 에너지부(DOE) 프로토콜을 사용했다면 약 1,500시간의 내구성으로 운전시간 450,000 km 수명을 예상한다. 화학적 내구 평가중에 전극의 활성 면적이 51% 감소해 촉매 열화가 막 내구성 약화에 영향을 준 것으로 판단되고, 촉매 열화 속도를 감소시키면 막 내구성이 증가할 것으로 예상된다.

Keywords

Acknowledgement

본 연구는 2021년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구입니다(20017400).

References

  1. James, B. D., Strategic Analysis Inc., "2021 DOE Hydrogen and Fuel Cells Program Review Presentation : Fuel Cell Systems Analysis," June 9(2021).
  2. Watanabe, M., Uchida, H. and Emori, M., "Analyses of Self-Humidification and Suppression of Gas Crossover in Pt-Dispersed Polymer Electrolyte Membranes for Fuel Cells," J. Electrochem. Soc., 145, 1137(1998).
  3. -Wang, L., Advani, S. G. and Prasad, A. K.,"Degradation Reduction of Polymer Electrolyte Membranes Using CeO2 as a Free-radical Scavenger in Catalyst Layer," Electrochimica Acta, 109, 775-780(2013). https://doi.org/10.1016/j.electacta.2013.07.189
  4. Zhao, D., Yi, B. L., Zhang, H. M., Yu, H. M., Wang, L., Ma, Y. W. and Xing, D. M., "Cesium Substituted 12-tungstophosphoric (CsxH3-xPW12O40) Loaded on Ceria-degradation Mitigation in Polymer Electrolyte Membrane," J. Power Sources, 190, 301-306 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.133
  5. Lai, Y. H., Mittelsteadt, C. K., Gittleman, C. S. and Dillard, D. A., "Viscoelastic Stress Analysis of Constrained Proton Exchange Membranes Under Humidity Cycling," J. Fuel Cell Sci. Technol., 6(2), 13(2009).
  6. Spernjak, D., Mukherjee, P. P., Mukundan, R., Davey, J., Hussey, D. S., Jcobson, D. and Borup, R. L., "Measurement of Water Content in Polymer Electrolyte Membranes Using High Resolution Neutron Imaging," ECS Trans., 33(1), 1451-1456(2010). https://doi.org/10.1149/1.3484637
  7. MacKinnon, S. M., Fuller, Coms, F. D., Schoeneweiss, M. R., Gittleman, C. S., Lai, Y., Jiang, H. R. and Brenner, A. M., "Fuel Cells-Proton Exchange Membrane Fuel Cells | Membranes: Design and Characterization," Encyclopedia of Electrochemical Power Sources, Elsvier, Amsterdam, 741-754(2009).
  8. Craig, S., Gittleman, C. S., Coms, F. D. and Lai, Y. H., "Polymer Electrolyte Fuel Cell Degradation-Chapter 2 - Membrane Durability: Physical and Chemical Degradation," Academic Press, Boston, 2012, Pages 15-88.
  9. Crum, M. and Liu, W., "Effective Testing Matrix for Studying Membrane Durability in PEM Fuel Cells: Part 2. Mechanical Durability and Combined Mechanical and Chemical Durability," ECS Trans., 3(1), 541-550(2006). https://doi.org/10.1149/1.2356175
  10. https://www1.eere.energy.gov/hydrogenandfuelcells/fuelcells/pdfs/component_durability_profile.pdf, "DOE Cell Component Accelerated Stress Test Protocols for PEM Fuel Cells."
  11. Jeong, J. J., Jeong, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Measurement of Hydrogen Crossover during PEMFC Operation," Korean Chem. Eng. Res., 53(4), 412-416(2015). https://doi.org/10.9713/kcer.2015.53.4.412
  12. Endoh, E., Terazono, S., Widjaja, H. and Takimoto, Y., "Degradation Study of MEA for PEMFCs under Low Humidity Conditions," Electrochem, Solid-State Lett., 7, 145-161(2004).
  13. Daido University, Ritsumeikian Univ., Tokyo Institute of Technology, Japan Automobile Research Ins., "Cell Evaluation and Analysis Protocol Guidline," NEDO, Development of PEFC Technologies for Commercial Promotion-PEFC Evaluation Project, January 30(2014).
  14. Oh, S. H., Cho, W. J., Lim, D. H., Yoo, D. K. and Park, K. P., "Reducing the Test Time for Chemical Durability of PEMFC Polymer Membrane," Korean Chem. Eng. Res., 59(3), 333-338(2021).
  15. Oh, S. H., Yun, J. W., Lee, D. W. and Park, K. P., "Comparison of Measurement Method of Hydrogen Permeability in Proton Exchange Membrane Fuel Cell," Korean Chem. Eng. Res., 57(4), 507-511(2019).
  16. Oh, S. H., Gwon, J. H., Lim, D. H. and Park, K. P., "Study on the Short Resistance and Shorting of Membrane of PEMFC," Korean Chem. Eng. Res., 59(1), 6-10(2021).
  17. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28(2), 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6