DOI QR코드

DOI QR Code

Green Synthesis of Dual Emission Nitrogen-Rich Carbon Dot and Its Use in Ag+ Ion and EDTA Sensing

  • Le Thuy Hoa (School of Chemical Engineering, University of Ulsan) ;
  • Jin Suk Chung (School of Chemical Engineering, University of Ulsan) ;
  • Seung Hyun Hur (School of Chemical Engineering, University of Ulsan)
  • 투고 : 2023.06.27
  • 심사 : 2023.06.30
  • 발행 : 2023.08.01

초록

Nitrogen-rich carbon dots (NDots) were synthesized by using uric acid as carbon and nitrogen sources. The as-synthesized NDots showed strong dual emissions at 420 nm and 510 nm with excitation at 350 nm and 460 nm, respectively. The physicochemical analyses such as X-ray photoelectron spectroscopy, Transmission electron microscopy and Fourier transform infrared spectroscopy were used to analyze the chemical, physical and morphological structures of NDots. The as-synthesized NDots exhibited wide linear range (0-100 µM) and very low detection limit (124 nM) in Ag+ ion sensing. In addition, Ag+ saturated NDots could be used as an EDTA sensor by the EDTA induced PL recovery.

키워드

과제정보

This study was also supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2022R1A2C1002901).

참고문헌

  1. Hoa, L. T., Tien, H. N., Luan, V. H., Chung, J. S. and Hur, S. H., "Fabrication of a Novel 2D-graphene/2D-NiO Nanosheet-based Hybrid Nanostructure and Its Use in Highly Sensitive NO2 Sensors," Sens. Actuators B: Chem., 185, 701-705(2013). https://doi.org/10.1016/j.snb.2013.05.050
  2. Hoa, L. T., Chung, J. S. and Hur, S. H., "A Highly Sensitive Enzyme-free Glucose Sensor Based on Co3O4 Nanoflowers and 3D Graphene Oxide Hydrogel Fabricated via Hydrothermal Synthesis," Sens. Actuators B: Chem., 223, 76-82(2016). https://doi.org/10.1016/j.snb.2015.09.009
  3. Choi, H., Ko, S. J., Choi, Y., Joo, P., Kim, T., Lee, B. R., Jung, J. W., Choi, H. J., Cha, M., Jeong, J. R., Hwang, I. W., Song, M. H., Kim, B. S. and Kim, J. Y., "Versatile Surface Plasmon Resonance of Carbon-dot-supported Silver Nanoparticles in Polymer Optoelectronic Devices," Nat. Photon., 7(9), 732-738(2013). https://doi.org/10.1038/nphoton.2013.181
  4. Li, X., Rui, M., Song, J., Shen, Z. and Zeng, H., "Carbon and Graphene Quantum Dots for Optoelectronic and Energy Devices: A Review," Adv. Funct. Mater., 25(31), 4929-4947(2015). https://doi.org/10.1002/adfm.201501250
  5. Li, H., He, X., Kang, Z., Huang, H., Liu, Y., Liu, J., Lian, S., Tsang, C. H. A., Yang, X. and Lee, S. T., "Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design," Angew. Chem. Int. Ed., 122(26), 4532-4536(2010). https://doi.org/10.1002/ange.200906154
  6. Martindale, B. C. M., Hutton, G. A. M., Caputo, C. A. and Reisner, E., "Solar Hydrogen Production Using Carbon Quantum Dots and a Molecular Nickel Catalyst," J. Am. Chem. Soc., 137(18), 6018-6025(2015). https://doi.org/10.1021/jacs.5b01650
  7. Huang, Q., Zhang, H., Hu, S., Li, F., Weng, W., Chen, J., Wang, Q., He, Y., Zhang, W. and Bao, X., "A Sensitive and Reliable Dopamine Biosensor was Developed Based on the Au@carbon Dots-chitosan Composite Film," Biosens. Bioelectron., 52, 277-280(2014). https://doi.org/10.1016/j.bios.2013.09.003
  8. Cui, X., Zhu, L., Wu, J., Hou, Y., Wang, P., Wang, Z. and Yang, M., "A Fluorescent Biosensor Based on Carbon Dots-labeled Oligodeoxyribonucleotide and Graphene Oxide for Mercury (II) Detection," Biosens. Bioelectron., 63, 506-512(2015). https://doi.org/10.1016/j.bios.2014.07.085
  9. Luo, P. G., Sahu, S., Yang, S. T., Sonkar, S. K., Wang, J., Wang, H., LeCroy, G. E., Cao, L. and Sun, Y. P., "Carbon "quantum" Dots for Optical Bioimaging," J. Mater. Chem. B, 1(16), 2116-2127(2013). https://doi.org/10.1039/c3tb00018d
  10. Zhu, S., Meng, Q., Wang, L., Zhang, J., Song, Y., Jin, H., Zhang, K., Sun, H., Wang, H. and Yang, B., "Highly Photoluminescent Carbon Dots for Multicolor Patterning, Sensors, and Bioimaging," Angew. Chem. Int. Ed., 52(14), 3953-3957(2013). https://doi.org/10.1002/anie.201300519
  11. Guo, Y., Wang, Z., Shao, H. and Jiang, X., "Hydrothermal Synthesis of Highly Fluorescent Carbon Nanoparticles from Sodium Citrate and Their Use for the Detection of Mercury Ions," Carbon, 52, 583-589(2013). https://doi.org/10.1016/j.carbon.2012.10.028
  12. Liu, Y., Zhou, Q., Yuan, Y. and Wu, Y., "Hydrothermal Synthesis of Fluorescent Carbon Dots from Sodium Citrate and Polyacrylamide and Their Highly Selective Detection of Lead and Pyrophosphate," Carbon, 115, 550-560(2017). https://doi.org/10.1016/j.carbon.2017.01.035
  13. Yang, Z. C., Wang, M., Yong, A. M., Wong, S. Y., Zhang, X.-H., Tan, H., Chang, A. Y., Li, X. and Wang, J., "Intrinsically Fluorescent Carbon Dots with Tunable Emission Derived from Hydrothermal Treatment of Glucose in the Presence of Monopotassium Phosphate," Chem. Comm., 47(42), 11615-11617(2011). https://doi.org/10.1039/c1cc14860e
  14. Wang, L., Zhu, S. J., Wang, H. Y., Qu, S. N., Zhang, Y. L., Zhang, J. H., Chen, Q. D., Xu, H. L., Han, W., Yang, B., Sun, H. B., "Common Origin of Green Luminescence in Carbon Nanodots and Graphene Quantum Dots," ACS Nano, 8(3), 2541-2547(2014). https://doi.org/10.1021/nn500368m
  15. Hu, S., Huang, Q., Lin, Y., Wei, C., Zhang, H., Zhang, W., Guo, Z., Bao, X., Shi, J. and Hao, A., "Reduced Graphene Oxide-carbon Dots Composite as an Enhanced Material for Electrochemical Determination of Dopamine," Electrochim. Acta, 130, 805-809(2014). https://doi.org/10.1016/j.electacta.2014.02.150
  16. Song, Y., Zhu, S., Zhang, S., Fu, Y., Wang, L., Zhao, X. and Yang, B., "Investigation from Chemical Structure to Photoluminescent Mechanism: a Type of Carbon Dots from the Pyrolysis of Citric Acid and An Amine," J. Mater. Chem. C, 3(23), 5976-5984(2015). https://doi.org/10.1039/C5TC00813A
  17. Zhou, M., Zhou, Z., Gong, A., Zhang, Y. and Li, Q., "Synthesis of Highly Photoluminescent Carbon Dots via Citric Acid and Tris for Iron(III) Ions Sensors and Bioimaging," Talanta, 143, 107-113(2015). https://doi.org/10.1016/j.talanta.2015.04.015
  18. Wang, L. and Zhou, H. S., "Green Synthesis of Luminescent Nitrogen-Doped Carbon Dots from Milk and Its Imaging Application," Anal. Chem., 86(18), 8902-8905(2014). https://doi.org/10.1021/ac502646x
  19. De, B. and Karak, N., "A Green and Facile Approach for the Synthesis of Water Soluble Fluorescent Carbon Dots from Banana Juice," RSC Adv., 3(22), 8286-8290(2013). https://doi.org/10.1039/c3ra00088e
  20. Mehta, V. N., Jha, S., Basu, H., Singhal, R. K. and Kailasa, S. K., "One-step Hydrothermal Approach to Fabricate Carbon Dots From Apple Juice for Imaging of Mycobacterium and Fungal Cells," Sens. Actuators B: Chem., 213, 434-443(2015). https://doi.org/10.1016/j.snb.2015.02.104
  21. Sun, D., Ban, R., Zhang, P. H., Wu, G. H., Zhang, J. R. and Zhu, J. J., "Hair Fiber as a Precursor for Synthesizing of Sulfur- and Nitrogen-co-doped Carbon Dots with Tunable Luminescence Properties," Carbon, 64, 424-434(2013). https://doi.org/10.1016/j.carbon.2013.07.095
  22. Teng, X., Ma, C., Ge, C., Yan, M., Yang, J., Zhang, Y., Morais, P. C. and Bi, H., "Green Synthesis of Nitrogen-doped Carbon Dots From Konjac Flour with "off-on" Fluorescence by Fe3+ and l-lysine for Bioimaging," J. Mater. Chem. B, 2(29), 4631-4639(2014). https://doi.org/10.1039/c4tb00368c
  23. Jiang, C., Wu, H., Song, X., Ma, X., Wang, J. and Tan, M., "Presence of Photoluminescent Carbon Dots in Nescafe® Original Instant Coffee: Applications to Bioimaging," Talanta, 127, 68-74(2014). https://doi.org/10.1016/j.talanta.2014.01.046
  24. Xu, Q., Pu, P., Zhao, J., Dong, C., Gao, C., Chen, Y., Chen, J., Liu, Y. and Zhou, H., "Preparation of Highly Photoluminescent Sulfur-doped Carbon Dots for Fe(iii) Detection," J. Mater. Chem. A, 3(2), 542-546(2015). https://doi.org/10.1039/C4TA05483K
  25. Bourlinos, A. B., Trivizas, G., Karakassides, M. A., Baikousi, M., Kouloumpis, A., Gournis, D., Bakandritsos, A., Hola, K., Kozak, O., Zboril, R., Papagiannouli, I., Aloukos, P., Couris, S., "Green and Simple Route Toward Boron Doped Carbon Dots with Significantly Enhanced Non-linear Optical Properties," Carbon, 83, 173-179(2015). https://doi.org/10.1016/j.carbon.2014.11.032
  26. Wang, F., Hao, Q., Zhang, Y., Xu, Y. and Lei, W., "Fluorescence Quenchometric Method for Determination of Ferric Ion Using Boron-doped Carbon Dots," Microchim. Acta, 183(1), 273-279(2016). https://doi.org/10.1007/s00604-015-1650-1
  27. Edison, T. N. J. I., Atchudan, R., Shim, J. J., Kalimuthu, S., Ahn, B. C. and Lee, Y. R., "Turn-off Fluorescence Sensor for the Detection of Ferric Ion in Water Using Green Synthesized N-doped Carbon Dots and its Bio-imaging," J. Photochem. Photobiol. B: Biol., 158, 235-242(2016). https://doi.org/10.1016/j.jphotobiol.2016.03.010
  28. Wei, W., Xu, C., Wu, L., Wang, J., Ren, J. and Qu, X., "Non-Enzymatic-Browning-Reaction: A Versatile Route for Production of Nitrogen-Doped Carbon Dots with Tunable Multicolor Luminescent Display," Sci. Rep., 4, 3564(2014).
  29. Yang, Z., Xu, M., Liu, Y., He, F., Gao, F., Su, Y., Wei, H. and Zhang, Y., "Nitrogen-doped, Carbon-rich, Highly Photoluminescent Carbon Dots from Ammonium Citrate," Nanoscale, 6(3), 1890-1895(2014). https://doi.org/10.1039/C3NR05380F
  30. Yan, F., Zou, Y., Wang, M., Mu, X., Yang, N. and Chen, L., "Highly Photoluminescent Carbon Dots-based Fluorescent Chemosensors for Sensitive and Selective Detection of Mercury Ions and Application of Imaging in Living Cells," Sens. Actuators B: Chem., 192, 488-495(2014). https://doi.org/10.1016/j.snb.2013.11.041
  31. Hrbac, J., Sichertova, D., Bancí rova, M., Lasovsky, J., Papadopoulos, K. and Nikokavouras, J., "Sensitized Chemiluminescence in Micellar Mixtures of Phthalhydrazide and Selected Dyes," J. Photochem. Photobiol. A., 167(2-3), 169-175(2004). https://doi.org/10.1016/j.jphotochem.2004.04.019
  32. Zhang, R. and Chen, W., "Nitrogen-doped Carbon Quantum Dots: Facile Synthesis and Application as a "turn-off" Fluorescent Probe for Detection of Hg2+ Ions," Biosens. Bioelectron., 55, 83-90(2014). https://doi.org/10.1016/j.bios.2013.11.074
  33. Sharifi, T., Nitze, F., Barzegar, H. R., Tai, C. W., Mazurkiewicz, M., Malolepszy, A., Stobinski, L. and Wagberg, T., "Nitrogen Doped Multi Walled Carbon Nanotubes Produced by CVD-correlating XPS and Raman Spectroscopy for the Study of Nitrogen Inclusion," Carbon, 50(10), 3535-3541(2012). https://doi.org/10.1016/j.carbon.2012.03.022
  34. Vasuki, G. and Selvaraju, R., "Growth and Characterization of Uric Acid Crystals," Int. J. Sci. Res., 3(8), 696-699(2014).
  35. Xu, Y., Wu, M., Liu, Y., Feng, X. Z., Yin, X. B., He, X. W. and Zhang, Y. K., "Nitrogen-Doped Carbon Dots: A Facile and General Preparation Method, Photoluminescence Investigation, and Imaging Applications," Chem. - Eur. J., 19(7), 2276-2283(2013). https://doi.org/10.1002/chem.201203641
  36. Dong, Y., Pang, H., Yang, H. B., Guo, C., Shao, J., Chi, Y., Li, C. M. and Yu, T., "Carbon-Based Dots Co-doped with Nitrogen and Sulfur for High Quantum Yield and Excitation-Independent Emission," Angew. Chem. Int. Ed., 52(30), 7800-7804(2013). https://doi.org/10.1002/anie.201301114
  37. Wu, G., Feng, M. and Zhan, H., "Generation of Nitrogen-doped Photoluminescent Carbonaceous Nanodots via the Hydrothermal Treatment of Fish Scales for the Detection of Hypochlorite," RSC Adv., 5(55), 44636-44641(2015). https://doi.org/10.1039/C5RA04989J
  38. Tabaraki, R., Nateghi, A., "Nitrogen- Doped Graphene Quantum Dots: "Turn-off" Fluorescent Probe for Detection of Ag+  Ions," J. Fluoresc., 26(1), 297-305(2016). https://doi.org/10.1007/s10895-015-1714-y
  39. Gao, Z., Lin, Z., Chen, X., Zhong, H. and Huang, Z., "A Fluorescent Probe Based on N-doped Carbon Dots for Highly Sensitive Detection of Hg2+ in Aqueous Solutions," Anal. Methods 8(10), 2297-2304(2016). https://doi.org/10.1039/C5AY03088A
  40. Datta, K. K. R., Qi, G., Zboril, R. and Giannelis, E. P., "Yellow Emitting Carbon Dots with Superior Colloidal, Thermal, and Photochemical Stabilities," J. Mater. Chem. C, 4(41), 9798-9803(2016). https://doi.org/10.1039/C6TC03452G
  41. Zhu, S., Zhang, J., Tang, S., Qiao, C., Wang, L., Wang, H., Liu, X., Li, B., Li, Y., Yu, W., Wang, X., Sun, H. and Yang, B., "Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up-Conversion Bioimaging Applications," Adv. Funct. Mater., 22(22), 4732-4740(2012). https://doi.org/10.1002/adfm.201201499
  42. Zhang, Y., Cui, P., Zhang, F., Feng, X., Wang, Y., Yang, Y. and Liu, X., "Fluorescent Probes for "off-on" Highly Sensitive Detection of Hg2+ and L-cysteine Based on Nitrogen-doped Carbon Dots," Talanta, 152, 288-300(2016). https://doi.org/10.1016/j.talanta.2016.02.018
  43. Gao, Z., Lin, Z., Chen, X., Lai, Z. and Huang, Z.-Y., "Carbon Dots-based Fluorescent Probe for Trace Hg2+ Detection in Water Sample," Sens. and Actuators B: Chem., 222, 965-971(2016). https://doi.org/10.1016/j.snb.2015.09.032
  44. Suryawanshi, A., Biswal, M., Mhamane, D., Gokhale, R., Patil, S., Guin, D. and Ogale, S., "Large Scale Synthesis of Graphene Quantum Dots (GQDs) from Waste Biomass and Their Use as an Efficient and Selective Photoluminescence on-off-on Probe for Ag+  Ions," Nanoscale, 6(20), 11664-11670(2014). https://doi.org/10.1039/C4NR02494J
  45. Algarra, M., Campos, B. B., Radotic, K., Mutavdzic, D., Bandosz, T., Jimenez-Jimenez, J., Rodriguez-Castellon, E. and Esteves da Silva, J. C. G., "Luminescent Carbon Nanoparticles: Effects of Chemical Function Alization, and Evaluation of Ag+  Sensing Properties," J. Mater. Chem. A, 2(22), 8342-8351(2014). https://doi.org/10.1039/c4ta00264d
  46. Cayuela, A., Soriano, M. L., Kennedy, S. R., Steed, J. W. and Valcarcel, M., "Fluorescent Carbon Quantum Dot Hydrogels for Direct Determination of Silver Ions," Talanta, 151, 100-105(2016). https://doi.org/10.1016/j.talanta.2016.01.029
  47. Qian, Z., Ma, J., Shan, X., Feng, H., Shao, L. and Chen, J., "Highly Luminescent N-Doped Carbon Quantum Dots as an Effective Multifunctional Fluorescence Sensing Platform," Chem. - A Eur. J., 20(8), 2254-2263(2014). https://doi.org/10.1002/chem.201304374
  48. Zheng, M., Xie, Z., Qu, D., Li, D., Du, P., Jing, X. and Sun, Z., "On-Off-On Fluorescent Carbon Dot Nanosensor for Recognition of Chromium(VI) and Ascorbic Acid Based on the Inner Filter Effect," ACS Appl. Mater. Interfaces, 5(24), 13242-13247(2013). https://doi.org/10.1021/am4042355
  49. Huang, S., Qiu, H., Zhu, F., Lu, S. and Xiao, Q., "Graphene Quantum Dots as On-off-on Fluorescent Probes for Chromium (VI) and Ascorbic Acid," Microchim. Acta 182(9), 1723-1731(2015). https://doi.org/10.1007/s00604-015-1508-6
  50. Han, C., Wang, R., Wang, K., Xu, H., Sui, M., Li, J. and Xu, K., "Highly Fluorescent Carbon Dots as Selective and Sensitive "on-off-on" Probes for Iron(III) Ion and Apoferritin Detection and Imaging in Living Cells," Biosen. Bioelectron., 83, 229-236(2016). https://doi.org/10.1016/j.bios.2016.04.066
  51. Ajitha, B., Kumar Reddy, Y. A., Reddy, P. S., Jeon, H. J. and Ahn, C. W., "Role of Capping Agents in Controlling Silver Nanoparticles Size, Antibacterial Activity and Potential Application as Optical Hydrogen Peroxide Sensor," RSC Adv., 6(42), 36171-36179(2016). https://doi.org/10.1039/C6RA03766F