DOI QR코드

DOI QR Code

초기 재령에서 비소성 황토 혼입 고강도 콘크리트의 압축강도 발현 예측을 위한 초음파 속도법 검토

UPV Prediction Method on Compressive Strength of High Strength Concrete Mixed with Non-Sintered Hwangto at Early Age

  • 남영진 (세명대학교 소방방재공학과) ;
  • 김원창 (세명대학교 소방방재공학과) ;
  • 최형길 (경북대학교 건축공학과) ;
  • 김규용 (충남대학교 건축공학과 ) ;
  • 이태규 (세명대학교 소방방재학과)
  • Young-Jin Nam (Department of Fire and Disaster Prevention, Semyung University) ;
  • Won-Chang Kim (Department of Fire and Disaster Prevention, Semyung University) ;
  • Hyeong-Gil Choi (School of Architecture, Civil Environment and Energy Engineering, Kyungpook University) ;
  • Gyu-Yong Kim (Department of Architectural Engineering, Chungnam University) ;
  • Tae-Gyu Lee (Department of Fire and Disaster Prevention, Semyung University)
  • 투고 : 2023.03.16
  • 심사 : 2023.05.15
  • 발행 : 2023.06.30

초록

본 연구에서는 초기 재령에서 NSH(Non-sintered Hwangto) 치환율에 따른 고강도 콘크리트의 역학적 특성을 평가하였다. NSH의 치환율은 15 % 및 30 %로 설정했다. 평가 항목은 압축강도와 UPV(Ultrasonic pulse velocity)로 설정하였으며, 최종적으로 UPV분석을 통해 압축강도 예측 방정식을 제안하였다. 압축강도와 UPV에서는 NSH 치환율이 증가할수록 낮은 강도 및 UPV를 보였다. 또한 압축강도와 UPV의 상관관계 분석 결과, 상관계수(R2)는 NC33(Normal concrete)은 0.99, NSHC(Non-sintered Hwangto Concrete)33-15는 0.97, 그리고 NSHC33-30은 0.94로 높은 상관관계를 나타냈다.

In this study, the mechanical properties of high-strength concrete according to the substitution rate of NSH(Non-sintered Hwangto) as an alternative material for cement were measured and evaluated. Through UPV(Ultrasonic pulse velocity) analysis, the compressive strength prediction equation was proposed, and the substitution rate of NSH was set at 15 % and 30 %. The evaluation items were compressive strength and UPV, and the curing period was set to 24 hours. In compressive strength and UPV, as the NSH substitution rate increased, lower strength and lower UPV were shown. In addition, the correlation number(R2 ) between compressive strength and UPV was 0.99 for NC(Normal Concrete), 0.97 for NSHC(Non-sintered Hwangto Concrete)33-15, and 0.94 for NSHC33-30.

키워드

과제정보

This work was supported by the Technology development Program(S3270705) funded by the Ministry of SMEs and Startups(MSS, Korea).

참고문헌

  1. Ben-Zeitun, A.E. (1986). Use of pulse velocity to predict compressive strength of concrete, International Journal of Cement Composites and Lightweight Concrete, 8(1), 51-59. https://doi.org/10.1016/0262-5075(86)90024-2
  2. Cho, Y.H., Min, W., Eum, J.Y. (2000). The property of compressive strength, tensile strength and flexural strength by various coarse aggregate, KSCE Journal of Civil and Environmental Engineering Research, 4, 273-276 [in Korean].
  3. Choi, H.Y., Hwang, H.Z., Kim, M.H., Kim, M.H. (2000). A study on the development of Hwangtoh admixture for the application of cement mortar, Journal of the Architectural Institute of Korea Structure & Construction, 16(6), 95-102 [in Korean].
  4. Choi, S.W., Choi, H.Y., Hwang, H.Z., Kim, M.H., Kim, M.H. (2000). An experimental study on the basic properties of concrete with Hwangtoh admixture, Proceeding of Architectural Institute of Korea, 20(2), 419-422 [in Korean].
  5. Demirboga, R., Turkmen, I., Karakoc, M.B. (2004). Relationship between ultrasonic velocity and compressive strength for high-volume mineral-admixtured concrete, Cement and Concrete Research, 34(12), 2329-2336. https://doi.org/10.1016/j.cemconres.2004.04.017
  6. Fan, Y., Zhang, S., Kawashima, S., Shah, S.P. (2014). Influence of kaolinite clay on the chloride diffusion property of cement-based materials, Cement and Concrete Composites, 45, 117-124. https://doi.org/10.1016/j.cemconcomp.2013.09.021
  7. Heo, J.O., Lee, J.K., Hyung, W.G. (2014). Properties of non-sintered Hwangtoh mortar using eco-friendly inorganic binding material, Journal of the Korea concrete Institute, 26(4), 499-506 [in Korean]. https://doi.org/10.4334/JKCI.2014.26.4.499
  8. Kang, S.S., Lee, S.L., Hwang, H.Z., Cho, M.C. (2008). Hydration heat and shrinkage of concrete using Hwangtoh binder, Journal of the Korea Concrete Institute, 20(5), 549-555 [in Korean]. https://doi.org/10.4334/JKCI.2008.20.5.549
  9. Kim, I.K., Seo, S.H., Kang, C.Y. (2000). General properties and ferric oxide content of Hwangtoh(yellow ochre), Journal of Pharmaceutical Investigation, 30(3), 219-222 [in Korean].
  10. Kim, K.N., Park, S.Y., Moon, K.T., Shim, J.Y. (2018). Characteristics of compressive strength of concrete due to form curing condition, KSCE Journal of Civil and Environmental Engineering Research, 38(1), 19-28 [in Korean].
  11. Kim, T.W., Kim, I.G. (2016). The strength characteristics of activated multi-component cement with kaolinite, Journal of the Korea Concrete Institute, 28(5), 593-600. https://doi.org/10.4334/JKCI.2016.28.5.593
  12. Kim, W.C, Jeong, K.S, Choi, H.G, Lee, T.G. (2022). Correlation analysis of ultrasonic pulse velocity and mechanical properties of normal aggregate and lightweight aggregate concretes in 30-60 MPa range, Materials, 15(8), 2952.
  13. Le, D.H., Sheen, Y.N., Lam, M.N.T. (2018). Fresh and hardened properties of self-compacting concrete with sugarcane bagasse ash-slag blended cement, Construction and Building Materials, 185, 138-147. https://doi.org/10.1016/j.conbuildmat.2018.07.029
  14. Lee, C.Y., Kim, J.H., Hyung, W.G. (2019). Acid resistance and component analysis of non-sintered cement mortar according to replacement of non-activated Hwangto, Journal of Korea Society of Waste Management, 36(2), 171-176 [in Korean]. https://doi.org/10.9786/kswm.2019.36.2.171
  15. Lee, G.H. (2010). Estimation and comparison of regional environmental Kuznets curves for CO2 emissions in Korea. Journal of Environmental Policy, 9(4), 53-76 [in Korean]. https://doi.org/10.17330/JOEP.9.4.201012.53
  16. Lee, N.K., Hwang, H.Z., Park, H.G. (2010). Flexural performance of activated Hwangtoh concrete beam, Journal of the Korea Concrete Institute, 22(4), 567-574 [in Korean]. https://doi.org/10.4334/JKCI.2010.22.4.567
  17. Lee, T.G., Lee, J.H. (2020). Setting time and compressive strength prediction model of concrete by nondestructive ultrasonic pulse velocity testing at early age, Construction and Building Materials, 252, 119027.
  18. Lee, S.S. (2010).A study on the fluidity properties and strength properties of non-sintered Hwangtoh mixed with PVA fiber, Journal of the Korea Institute of Building Construction, 10(3), 49-56 [in Korean]. https://doi.org/10.5345/JKIC.2010.10.3.049
  19. Olivier, J. (2022). Trend in Global CO and Total Greenhouse Gas Emissions - 2021 Summary Report, Netherlands Environmental Assessment Agency, Netherlands.
  20. Pyszniak, J. (1968). Method of concrete strength control, in prefabricated slabs, by ultrasound, Building Science, 2(4), 331-335. https://doi.org/10.1016/0007-3628(68)90013-3
  21. Shariq, M., Prasad, J., Masood, A. (2013). Studies in ultrasonic pulse velocity of concrete containing GGBFS, Construction and Building Materials, 40, 944-950. https://doi.org/10.1016/j.conbuildmat.2012.11.070
  22. Trtnik, G., Kavcic, F., Turk, G. (2009). Prediction of concrete strength using ultrasonic pulse velocity and artificial neural networks. Ultrasonics, 49(1), 53-60. https://doi.org/10.1016/j.ultras.2008.05.001
  23. Turkmen, I., Oz, A., Aydin, A.C. (2010). Characteristics of workability, strength, and ultrasonic pulse velocity of SCC containing zeolite and slag, Scientific Research and Essays, 5(15), 2055-2064.
  24. Xu, H., Van Deventer, J.S. (2002). Microstructural characterisation of geopolymers synthesised from kaolinite/stilbite mixtures using XRD, MAS-NMR, SEM/EDX, TEM/EDX, and HREM, Cement and Concrete Research, 32(11), 1705-1716. https://doi.org/10.1016/S0008-8846(02)00859-1