DOI QR코드

DOI QR Code

에어로졸 기술로 제작된 은 나노 입자를 활용한 페로브스카이트 태양전지 성능 향상 연구

Performance enhancement of perovskite solar cells using Ag nanoparticles via aerosol technology

  • 박수아 (부산대학교 기계공학부) ;
  • 박인용 (한국기계연구원 지속가능환경연구실) ;
  • 박대훈 (한국기계연구원 지속가능환경연구실) ;
  • 한방우 (한국기계연구원 지속가능환경연구실) ;
  • 이건희 (한국기계연구원 지속가능환경연구실) ;
  • 김민철 (부산대학교 기계공학부)
  • Sua Park (School of Mechanical Engineering, Pusan National University) ;
  • Inyong Park (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Dae Hoon Park (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Bangwoo Han (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Gunhee Lee (Department of Sustainable Environment Research, Korea Institute of Machinery & Materials) ;
  • Min-cheol Kim (School of Mechanical Engineering, Pusan National University)
  • 투고 : 2023.05.25
  • 심사 : 2023.06.20
  • 발행 : 2023.06.30

초록

Solar cells, converting abundant solar energy into electrical energy, are considered crucial for sustainable energy generation. Recent advancements focus on nanoparticle-enhanced solar cells to overcome limitations and improve efficiency. These cells offer two potential efficiency enhancements. Firstly, plasmonic effects through nanoparticles can improve optical performance by enhancing absorption. Secondly, nanoparticles can improve charge transport and reduce recombination losses, enhancing electrical performance. However, factors like nanoparticle size, placement, and solar cell structure influence the overall performance. This study evaluates the performance of silver nanoparticles incorporated in a p-i-n structure of perovskite solar cells, generated via aerosol state by the evaporation and condensation system. The silver nanoparticles deposited between the hole transport layer and transparent electrode form nanoparticle embedded transport layer (NETL). The evaluation of the optoelectronic properties of perovskite devices using NETL demonstrates their potential for improving efficiency. The findings highlight the possibility of nanoparticle incorporation in perovskite solar cells, providing insights for sustainable energy generation.

키워드

과제정보

이 연구는 부산대학교 기본연구지원사업(2년)에 의하여 연구되었으며, 이에 감사드립니다.

참고문헌

  1. Carretero-Palacios, S., Jimenez-Solano, A., & Miguez, H. (2016). Plasmonic nanoparticles as light-harvesting enhancers in perovskite solar cells: a user's guide. ACS energy letters, 1(1), 323-331. https://doi.org/10.1021/acsenergylett.6b00138
  2. Catchpole, K. A., & Polman, A. (2008). Plasmonic solar cells. Optics express, 16(26), 21793-21800. https://doi.org/10.1364/OE.16.021793
  3. Contreras-Bernal, L., Ramos-Terron, S., Riquelme, A., Boix, P. P., Idigoras, J., Mora-Sero, I., & Anta, J. A. (2019). Impedance analysis of perovskite solar cells: a case study. Journal of Materials Chemistry A, 7(19), 12191-12200. https://doi.org/10.1039/c9ta02808k
  4. Galkowski, K., Mitioglu, A., Miyata, A., Plochocka, P., Portugall, O., Eperon, G. E., Wang, J. T., Stergiopoulos, T., Stranks, S. D., Snaith, H. J., & Nicholas, R. J. (2016). Determination of the exciton binding energy and effective masses for methylammonium and formamidinium lead tri-halide perovskite semiconductors. Energy & Environmental Science, 9(3), 962-970. https://doi.org/10.1039/c5ee03435c
  5. Jung, K., Song, H. J., Lee, G., Ko, Y., Ahn, K., Choi, H., Kim, J. Y., Ha, K., Song, J. Lee, J. K., Lee, C., & Choi, M. (2014). Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles. ACS nano, 8(3), 2590-2601. https://doi.org/10.1021/nn500276n
  6. Kim, B. J., Kim, M. C., Lee, D. G., Lee, G., Bang, G. J., Jeon, J. B., Choi, M., & Jung, H. S. (2018). Interface design of hybrid electron extraction layer for relieving hysteresis and retarding charge recombination in perovskite solar cells. Advanced Materials Interfaces, 5(23), 1800993. https://doi.org/10.1002/admi.201800993
  7. Kim, M. C., Ahn, N., Lim, E., Jin, Y. U., Pikhitsa, P. V., Heo, J., Kim, S. K., Jung, H. S., & Choi, M. (2019). Degradation of CH3NH3PbI3 perovskite materials by localized charges and its polarity dependency. Journal of Materials Chemistry A, 7(19), 12075-12085. https://doi.org/10.1039/c9ta03180d
  8. Lee, G., Kim, M. C., Choi, Y. W., Ahn, N., Jang, J., Yoon, J., Kim, S. M., Lee, J. G., Kang, D., Jung, H. S., & Choi, M. (2019). Ultra-flexible perovskite solar cells with crumpling durability: toward a wearable power source. Energy & Environmental Science, 12(10), 3182-3191. https://doi.org/10.1039/c9ee01944h
  9. Lee, S. A., & Link, S. (2021). Chemical interface damping of surface plasmon resonances. Accounts of Chemical Research, 54(8), 1950-1960. https://doi.org/10.1021/acs.accounts.0c00872
  10. Lu, H., Zhang, D., Ren, X., Liu, J., & Choy, W. C. (2014). Selective growth and integration of silver nanoparticles on silver nanowires at room conditions for transparent nano-network electrode. Acs Nano, 8(10), 10980-10987. https://doi.org/10.1021/nn504969z
  11. Oga, H., Saeki, A., Ogomi, Y., Hayase, S., & Seki, S. (2014). Improved understanding of the electronic and energetic landscapes of perovskite solar cells: high local charge carrier mobility, reduced recombination, and extremely shallow traps. Journal of the American Chemical Society, 136(39), 13818-13825. https://doi.org/10.1021/ja506936f
  12. Omrani, M., Fallah, H., Choy, K. L., & Abdi-Jalebi, M. (2021). Impact of hybrid plasmonic nanoparticles on the charge carrier mobility of P3HT: PCBM polymer solar cells. Scientific reports, 11(1), 19774. https://doi.org/10.1038/s41598-021-99095-1
  13. Park, J., Kim, J., Yun, H. S., Paik, M. J., Noh, E., Mun, H. J., Kim, M. G., Shin, T. J., & Seok, S. I. (2023). Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature, 616(7958), 724-730. https://doi.org/10.1038/s41586-023-05825-y
  14. Park, N. G. (2015). Perovskite solar cells: an emerging photovoltaic technology. Materials today, 18(2), 65-72. https://doi.org/10.1016/j.mattod.2014.07.007
  15. Stranks, S. D., Eperon, G. E., Grancini, G., Menelaou, C., Alcocer, M. J., Leijtens, T., Herz, L. M., Petrozza, A., & Snaith, H. J. (2013). Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science, 342(6156), 341-344. https://doi.org/10.1126/science.1243982
  16. Sun, K., Zhang, S., Li, P., Xia, Y., Zhang, X., Du, D., ... & Ouyang, J. (2015). Review on application of PEDOTs and PEDOT: PSS in energy conversion and storage devices. Journal of Materials Science: Materials in Electronics, 26, 4438-4462. https://doi.org/10.1007/s10854-015-2895-5
  17. Wang, D. H., Park, K. H.,Seo, J. H., Seifter, J., Jeon, J. H., Kim, J. K., Park, J. H., Park, O. O., & Heeger, A. J. (2011). Enhanced power conversion efficiency in PCDTBT/PC70BM bulk heterojunction photovoltaic devices with embedded silver nanoparticle clusters. Advanced Energy Materials, 1(5), 766-770 https://doi.org/10.1002/aenm.201100347
  18. Wu, Z., Raga, S. R., Juarez-Perez, E. J., Yao, X., Jiang, Y., Ono, L. K., Ning, Z., Tian, H., & Qi, Y. (2018). Improved efficiency and stability of perovskite solar cells induced by C=O functionalized hydrophobic ammonium-based additives. Advanced Materials, 30(3), 1703670. https://doi.org/10.1002/adma.201703670