DOI QR코드

DOI QR Code

Deformation characteristics and stability analysis of semi-covered deep excavations with existing buildings

  • Linfeng Wang (College of Civil Engineering, Chongqing University) ;
  • Xiaohan Zhou (College of Civil Engineering, Chongqing University) ;
  • Tao Chen (China Railway Major Bridge Reconnaissance & Design Institute Co., Ltd.) ;
  • Xinrong Liu (College of Civil Engineering, Chongqing University) ;
  • Peng Liu (College of Civil Engineering, Chongqing University) ;
  • Shaoming Wu (Guangzhou Expressway Co.,Ltd.) ;
  • Feng Chen (Guangzhou Expressway Co.,Ltd.) ;
  • Bin Xu (College of Civil Engineering, Chongqing University)
  • Received : 2021.06.29
  • Accepted : 2023.05.25
  • Published : 2023.07.10

Abstract

The cover plate and the building loads often make the semi-covered deep excavations with existing buildings bearing asymmetric load, presenting different deformation characteristics with normal excavations, which is not absolutely clear in current studies. Based on a typical engineering, the building storeys, the basement storeys, the pile length, the existence of the cover plate (CP) and the depth of the diaphragm walls (DW) were selected as variables, and 44 groups of simulation were designed to study the influence of existing buildings and the semi-covered supporting system on the deformation of the excavations. The results showed that the maximum lateral displacement of DW, δhm, and the depth of δhm, Hm, are affected seriously by the building storeys and the basement storeys. Asymmetric structures and loading lead to certain lateral displacement of DW at the beginning of excavation, resulting in different relationships between δhm and excavation depth, H. The maximum surface settlement outside the pit, δvm, increases significantly and the location, dm, moves away from the pit with the building storeys increases. δvm has a quadratic correlation with H due to the existing buildings. CP and building load will affect the style of the lateral displacement curve of DW seriously in different aspects.

Keywords

Acknowledgement

The study is supported by National Natural Science Foundation of China (Grant No. 41972266), Chongqing Postdoctoral Natural Science Foundation of China (Grant No. cstc2019jcyj-bshX0072) and Graduate Scientific Research and Innovation Foundation of Chongqing, China (Grant No. CYB20031).

References

  1. American Association of State Highway and Transportation Officials (2007), The AASHTO LRFD Bridge Design Specifications (US-2007). American Association of State Highway and Transportation Officials, Washington, DC, USA.
  2. Arboleda-Monsalve, L.G. and Finno, R.J. (2015), "Influence of concrete time-dependent effects on the performance of top-down construction", J. Geotech. Geoenviron. Eng., 141, 985-994. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001260.
  3. Capraru, C., amd Adam, D. (2014), "Evaluating the influence of deep excavations on neighbouring buildings by numerical analysis", Proceedings of the 8th European conference on Numerical Methods in Geotechnical Engineering, Delft, The Netherlands, Jun.
  4. Chen, R.P., Li, Z.C., Chen, Y.M., Ou, C.Y., Hu, Q., and Rao, M. (2015), "Failure investigation at a collapsed deep excavation in very sensitive organic soft clay", J. Perform. Constr. Fac., 29(3), 04014078. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000557.
  5. Clough, G.W., and O'Rourke, T.D. (1992), "Closure to "Construction induced movements of in situ walls" by G. W. Clough and Thomas D. O'Rourke (June 18-21, 1990, No. 25)", J. Geotech. Eng., 118(4), 665-666. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:4(665).
  6. Guo, P.P., Gong, X.N. and Wang, Y.X. (2019), "Displacement and force analyses of braced structure of deep excavation considering unsymmetrical surcharge effect", Comput. Geotech., 113, 103102. https://doi.org/10.1016/j.compgeo.2019.103102.
  7. Houhou, M.N., Emeriault, F. and Belounar, A. (2019), "Three-dimensional numerical back-analysis of a monitored deep excavation retained by strutted diaphragm walls", Tunn. Undergr. Sp. Tech., 83, 153-164. https://doi.org/10.1016/j.tust.2018.09.013.
  8. Hsiung, B.C.B., Yang, K.H., Aila, W. and Ge, L. (2018), "Evaluation of the wall deflections of a deep excavation in Central Jakarta using three-dimensional modeling", Tunn. Undergr. Sp. Tech., 72, 84-96. https://doi.org/10.1016/j.tust.2017.11.013.
  9. Hsiung, B.C.B., Yang, K.H., Aila, W. and Hung, C. (2016), "Three-dimensional effects of a deep excavation on wall deflections in loose to medium dense sands", Comput. Geotech., 80, 138-151. https://doi.org/10.1016/j.compgeo.2016.07.001.
  10. Huang, M.S., Liu, Y.H. and Sheng, D.C. (2011), "Simulation of yielding and stress-stain behavior of Shanghai soft clay", Comput. Geotech., 38(3), 341-353. https://doi.org/10.1016/j.compgeo.2010.12.005.
  11. Jamsawang, P., Jamnam, S., Jongpradist, P., Tanseng, P. and Horpibulsuk, S. (2017), "Numerical analysis of lateral movements and strut forces in deep cement mixing walls with top-down construction in soft clay", Comput. Geotech., 88, 174-181. https://doi.org/10.1016/j.compgeo.2017.03.018.
  12. Jamsawang, P., Voottipruex, P., Tanseng, P., Jongpradist, P., and Bergado, D.T. (2019), "Effectiveness of deep cement mixing walls with top-down construction for deep excavations in soft clay: case study and 3D simulation", ACTA Geotechnica, 14(1), 225-246. https://doi.org/10.1007/s11440-018-0660-7.
  13. Khoiri, M., and Ou, C.Y. (2013), "Evaluation of deformation parameter for deep excavation in sand through case histories," Comput. Geotech., 47, 57-67. https://doi.org/10.1016/j.compgeo.2012.06.009.
  14. Korff, M. (2013), "Response of piled buildings to the construction of deep excavations", Ph.D. Dissertation, Univ. of Cambridge, Cambridge, U.K.
  15. Li, A.G., Li, Y.L. and Zhao, X.W. (2013), "Deformation research of temporary road and bridge system in semi top-down pit with gradual width", Adv. Civil Eng., 256-259, 1715-1720. https://doi.org/10.4028/www.scientific.net/AMM.256-259.1715.
  16. Li, D.P., Li, Z.Q. and Tang, D.G. (2015), "Three-dimensional effects on deformation of deep excavations", Geotech. Eng., 168(6), 551-562. https://doi.org/10.1680/jgeen.15.00042.
  17. Li, H.J., Liu, S.Y. and Tong, L.Y. (2019), "Evaluation of lateral response of single piles to adjacent excavation using data from cone penetration tests", Can. Geotech. J., 56(2), 236-248. https://doi.org/10.1139/cgj-2018-0131.
  18. Likitlersuang, S., Surarak, C., Wanatowski, D., Oh, E. and Balasubramaniam, A. (2013), "Finite element analysis of a deep excavation: A case study from the Bangkok MRT", Soils Found., 53(5), 756-773. https://doi.org/10.1016/j.sandf.2013.08.013.
  19. Lim, A., Hsieh, P.G. and Ou, C.Y. (2016), "Evaluation of buttress wall shapes to limit movements induced by deep excavation", Comput. Geotech., 78, 155-170. https://doi.org/10.1016/j.compgeo.2016.05.012.
  20. Liu, S.H., Yang, J.S., Fu, J.Y. and Zheng, X.C. (2019), "Performance of a deep excavation irregular supporting structure subjected to asymmetric loading", Int. J. Geomech., 19(7), 05019007. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001468.
  21. Liu, X.R., Liu, P., Zhou, X.H., Wang, L.F., Zhong, Z.L., Lou X.H., Chen, T. and Zhang, J.L. (2022a), "Influence characteristics of isolation piles on deformation of existing shallow foundation buildings under deep excavation", Geomech. Eng., 31(1), 1-14. https://doi.org/10.12989/gae.2022.31.1.001.
  22. Liu, X.R., Wang, L.F., Zhou, X.H., Wang, J.M., Zhong, Z.L., Liu, P., Xiong, F. and He, C.M. (2022b), "E-M calculation model and its application of calculating deformation in a new tunnel orthogonally undercrossing an existing tunnel", Tunn. Undergr. Sp. Tech., 123, 104418. https://doi.org/10.1016/j.tust.2022.104418.
  23. Luat, N.V., Lee, K. and Thai, D.K. (2020b), "Application of artificial neural networks in settlement prediction of shallow foundations on sandy soils", Geomech. Eng., 20(5), 385-397. https://doi.org/10.12989/gae.2020.20.5.385.
  24. Luat, N.V., Nguyen, V.Q., Lee, S., Woo, S. and Lee, K. (2020a), "An evolutionary hybrid optimization of MARS model in predicting settlement of shallow foundations on sandy soils", Geomech. Eng., 21(6), 583-598. https://doi.org/10.12989/gae.2020.21.6.583.
  25. Mansouri, H., and Asghari K.E. (2019), "Two dimensional finite element modeling of Tabriz metro underground station L2-S17 in the marly layers", Geomech. Eng., 19(4), 315-327. https://doi.org/10.12989/gae.2019.19.4.315.
  26. Ministry of Construction, People's Republic of China (1998), The Standard of Loading for the Municipal Bridge Design (CJJ 77-1998). China Building Industry Press, Beijing, China. (in Chinese)
  27. Mitchell, A.R., Izumi, C., Bell, B.C. and Brunton, S. (2000), "Semi top-down construction method for Singapore MRT, NEL", Proceedings of the International Conference on Tunnels and Underground Structures, Singapore, Singapore, Nov.
  28. Ng, C.W.W., Wei, J., Poulos, H. and Liu, H. (2017), "Effects of multipropped excavation on an adjacent floating pile", J. Geotech. Geoenviron. Eng., 143(7), 04017021. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001696.
  29. Nisha, J.J., Muttharam, M., Vinoth, M. and Prasad, C.R.E. (2019), "Design, construction and uncertainties of a deep excavation adjacent to the high-rise building", Indian Geotech. J., 49(5), 580-594. https://doi.org/10.1007/s40098-019-00368-4.
  30. Orazalin, Z.Y., Whittle, A.J. and Olsen, M.B. (2015), "Three-dimensional analyses of excavation support system for the stata center basement on the MIT campus", J. Geotech. Geoenviron. Eng., 141(7), 05015001. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001326.
  31. Qian, J.G., Tong Y.M., Mu L.L., Lu Q. and Zhao H.Q. (2020), "A displacement controlled method for evaluating ground settlement induced by excavation in clay", Geomech. Eng., 20(4), 275-285. https://doi.org/10.12989/gae.2020.20.4.275.
  32. Rotisciani, G.M., Miliziano, S. and Sacconi, S. (2016), "Design, construction, and monitoring of a building with deep basements in Rome", Can. Geotech. J., 53(2), 210-224. https://doi.org/10.1139/cgj-2015-0244.
  33. Shu, X.L. (2019), "Study on stress and deformation characteristics ofsemi-rigid and semi-cover excavation system", M.sc. Dissertation, East China Jiaotong University, Nanchang, China (in Chinese)
  34. Soomro, M.A., Mangnejo, D.A., Bhanbhro, R., Memon, N.A. and Memon, M.A. (2019), "3D finite element analysis of pile responses to adjacent excavation in soft clay: Effects of different excavation depths systems relative to a floating pile", Tunn. Undergr. Sp. Tech., 86, 138-155. https://doi.org/10.1016/j.tust.2019.01.012.
  35. Talha, S.B. (2001), "Deformation behaviour of a retaining wall for a deep basement excavation with semi-top down method", Proceedings of the 14th Southeast Asian Geotechnical Conference, Hong Kong, China, Dec.
  36. Tan, Y. and Wang, D.L. (2013), "Characteristics of a large-scale deep foundation pit excavated by the central-island technique in Shanghai soft clay. I: bottom-up construction of the central cylindrical shaft", J. Geotech. Geoenviron. Eng., 139(11), 1875-1893. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000928.
  37. Tan, Y., Zhu, H.H., Peng, F.L., Karlsrud, K. and Wei, B. (2017), "Characterization of semi-top-down excavation for subway station in Shanghai soft ground", Tunn. Undergr. Sp. Tech., 68, 244-261. https://doi.org/10.1016/j.tust.2017.05.028.
  38. Tian, H., Tan, S.A., Tjahyono, S., Lim, C.H. and Tanaka, H. (2010), "Ground improvement for deep excavation of city square mall," Proceedings of the 1st International Symposium on Ground Inprovement Technologies and Case Histories, Singapore, Singapore, Dec.
  39. Xiang, Y.Z., Goh, A.T.C., Zhang, W.G. and Zhang, R.H. (2018), "A multivariate adaptive regression splines model for estimation of maximum wall deflections induced by braced excavation," Geomech. Eng., 14(4), 315-324. https://doi.org/10.12989/gae.2018.14.4.315.
  40. Yang, X.H., Jia, M.C. and Ye, J.Z. (2020), "Method for estimating wall deflection of narrow excavations in clay", Comput. Geotech., 117, 103224. https://doi.org/10.1016/j.compgeo.2019.103224.
  41. Yu, Y., Sun, H.Y. and Juang, C.H. (2018), "A new model for response of laterally loaded piles in soil-rock mixtures", Comput. Geotech., 104, 237-246. https://doi.org/10.1016/j.compgeo.2018.08.021.
  42. Zhang, W.G., Zhang, R.H. and Goh, A.T.C. (2018), "MARS inverse analysis of soil and wall properties for braced excavations in clays," Geomech. Eng., 16(6), 577-588. https://doi.org/10.12989/gae.2018.16.6.577.
  43. Zhang, R.H., Zhang, W.G. and Goh, A.T.C. (2018), "A simple model for ground surface settlement induced by braced excavation subjected to a significant groundwater drawdown" Geomech. Eng., 16(6), 635-642. https://doi.org/10.12989/gae.2018.16.6.635.
  44. Zheng, G., Peng, S.Y., Ng, C.W.W., and Diao, Y. (2012), "Excavation effects on pile behaviour and capacity", Can. Geotech. J., 49(12), 1347-1356. https://doi.org/10.1139/t2012-095.