DOI QR코드

DOI QR Code

Geochemical Implication of Rare Earth Element pattern and Rb-Sr mineral isochron from consituent minerals in the Naedeokri-Nonggeori granite, Yeongnam Massif, Korea

영남육괴 북동부 내덕리-농거리 화강암내 구성광물의 희토류원소 분포도 및 Rb-Sr 광물연대의 지구화학적 의의

  • Seung-Gu Lee (Geology & Space Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • SeungRyeol Lee (Geologic Hazards Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 이승구 (한국지질자원연구원 국토우주지질연구본부) ;
  • 이승렬 (한국지질자원연구원 지질재해연구본부)
  • Received : 2022.12.01
  • Accepted : 2023.06.13
  • Published : 2023.06.30

Abstract

The Naedeokri and Nonggeori granites are early Proterozoic granites of the Taebaek-Sangdong area in the northeastern part of the Yeongnam Massif. In this paper, rare earth elements (REEs) concentrations of the minerals in Naedeokri and Nonggeori granites and Rb-Sr mineral isochron age are reported. Except zircon, the constituent minerals such as mica, feldspar, quartz, and tourmaline show LREE-enriched and HREE-depleted REE patterns with relatively large Eu negative anomaly. However, zircon has geochemical characteristic of LREE- and HREE-enriched REE pattern with large Eu positive anomaly. This pattern suggests that zircon should be hydrothermal zircon due to deuteric hydrothermal alteration. In addition, the Rb-Sr mineral age of Naedeokri granite indicates an age value of 1.814±142(2σ) Ma. The Rb-Sr whole rock age including pervious data of Naedeokri and Nogggeori granite indicates an age value of 1,707±74(2σ) Ma. This value is younger than the Sm-Nd isochron of 1.87 Ga, indicating that the Rb-Sr isotope system may be re-homogenized by hydrothermal alteration during the transition from a magmatic to a hydrothermal system.

내덕리 화강암과 농거리 화강암은 영남육괴 동북부의 태백-상동지역에서 분포하는 고원생대 화강암이다. 이 단보에서는 내덕리 화강암과 농거리 화강암에서 추출된 광물들에 대해 희토류원소의 함량측정 및 이들 광물들로 부터의 Rb-Sr 광물연대를 구함으로써 내덕리-농거리 화강암의 지구화학적 진화사를 재조명할 수 있는 틀을 마련하고자 하였다. 운석으로 규격화한 희토류원소 분포도에서는, 저어콘을 제외한 흑운모, 장석, 석영, 전기석 등 모든 주구성광물은 경희토류가 부화되어 있고, 중희토류가 결핍된 희토류원소 분포도를 보여주고 있다. 저어콘의 경우 Eu의 강한 부(-)의 이상과 더불어 경희토류와 중희토류 모두 부화된 특성을 보여주는데. 이는 열수기원임을 지시하는 증거라 할 수 있다. 그리고 Rb-Sr 광물연대에 있어서 광물분리한 시료만을 이용한 Rb-Sr 광물연대는 1.814±142(2σ) Ma의 연대치를 지시해주었고, 기존의 자료와 함께 통합하여 계산했을 때는 1,707±74(2σ) Ma의 연대치를 지시해주었다. 이 광물연대값은 겉보기에서는 기존의 1.72 Ga Rb-Sr 전암연대보다는 더 오래됐고, 1.87 Ga의 Sm-Nd 전암연대보다는 더 젊다. 이와 같이 광물연대와 전암연대가 다르게 나타나는 것은, 저어콘의 희토류원소 분포도가 지시해주는 바와 같이 Rb-Sr 동위원소계가 화강암의 정치 후 열수변질을 받았음을 지시해준다고 해석된다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원 주요사업인 국토 지질조사 및 지질도-지질주제도 발간(과제번호 23-3111-1, GP2020-003) 및 한국연구재단의 기본연구사업(화강암질 마그마의 분화과정이 희토류원소의 방사성 동위원소와 안정동위원소 조성변화에 미치는 영향(2020R1F1A1075924, NP2020-012) 과제의 지원 하에 수행되었다. 이 기술보고의 내용이 향상되도록 세밀하게 검토해주신 부경대학교의 박계헌 교수님과 익명의 심사위원께 깊은 감사드립니다.

References

  1. Farrar, E., Clark, A.H. and Kim, O.J., 1978, Age of the Sangdong tungsten deposits ROK and its bearing on metallogeny of the Southern Korean Peninsula. Economic Geology 73, 547-566. https://doi.org/10.2113/gsecongeo.73.4.547
  2. Chang, H.-W., Turek, A. and Kim, C.-B., 2003, U-Pb zircon geochronology and Sm-Nd isotopic constraint for Precambrian plutonic rocks in the northeastern part of Ryeongnam massif, Korea. Geochemical Journal, 37, 471-491. https://doi.org/10.2343/geochemj.37.471
  3. Eberlei, T., Habler, G., Wegner, W., Schuster, R., Korner, W., Thoni, M. and Abart, R., 2015, Rb/Sr isotopic and compositional retentivity of muscovite during deformation. Lithos, 227, 161-178. https://doi.org/10.1016/j.lithos.2015.04.007
  4. Gill, R., 2010, Igneous rocks and processes: A practical guide. Wiley-Blackwell, 428p.
  5. Kim, J. and Cho, M., 2003, Low-pressure metamorphism and leucogranite magmatism, northeastern Yeongnam Massif, Korea: implication for Paleoproterozoic crustal evolution. Precambrian Research 122, 235-251. https://doi.org/10.1016/S0301-9268(02)00213-9
  6. Kim, M.J. and Lee, S-G., 2022, Optimal conditions for pretreated sample for Sr isotope analysis by MC-ICP-MS: A comparison between eichrom (SR-R50-S)'s and bio-rad (AG50W-X8)'s resins. Korean Journal of Mineralogy and Petrology, 35/4, 507-520.
  7. Kim, S-Y. and Moon, H-S. 1994, The differential characteristics of tourmalines from pegmatites and its associated rocks, sangdong area. Economic and Environmental Geology, 27/5, 441-449.
  8. Lee, S-G., Kim, T., Han, S., Kim, H-C., Lee, H-M., Tanaka, T., Lee, S-R. and Lee, J-I., 2014, Effect of zircon on rare-earth element determination of granitoids by ICP-MS. Journal of the Petrological Society of Korea, 23, 337-349. https://doi.org/10.7854/JPSK.2014.23.4.337
  9. Lee, S-G., Kim, T., Tanaka, T, Lee, S-R. and Lee, J-I., 2016, Effect on the measurement of trace element by pressure bomb and conventional teflon vial methods in the digestion technique. Journal of Petrological Society of Korea, 25, 1-13 (with English abstract in Korean). https://doi.org/10.7854/JPSK.2016.25.1.1
  10. Lee, S-G. and Ko, K-S., 2023, Development of an analytical method for accurate and precise determination of rare earth element concentrations in geological materials using an MC-ICP-MS and group separation. Frontiers in Chemistry. 10:906160. doi: 10.3389/fchem.2022.906160
  11. Lee, S-G., Shin, S-C., Jin, M-S., Ogasawara, M. and Yang, M. K., 2005, Two paleoproterozoic strongly peraluminous granitic plutons (Nonggeori and Naedeokri granites) at the northeastern part of Yeongnam Massif, Korea: Geochemical and isotopic constraints in East Asian crustal formation history. Precambrian Research 139, 101-120. https://doi.org/10.1016/j.precamres.2005.06.006
  12. Lee, Y.I., Choi, T., Orihashi, Y., 2011, LA-ICP-MS zircon U-Pb ages of the precambrian yuli group. Journal of the Geological Society of Korea. 47(1), 81-87.
  13. Long, X., Sun, M., Yuan, C., Kroner, A. and Hu, A., 2012, Zircon REE patterns and geochemical characteristics of Paleoproterozoic anatectic granite in the northern Tarim Craton, NW China: Implications for the reconstruction of the Columbia supercontinent. Precambrian Research 222-223, 474-487. https://doi.org/10.1016/j.precamres.2011.09.009
  14. McDonough, W.F. and Sun, S-S., 1995, The composition of the Earth, Chemical Geology, 120, 15-19. https://doi.org/10.1016/0009-2541(94)00140-4
  15. Park, K-H., Cheong, C-S., Lee, K-S. and Chang, H-W., 1993, Isotopic composition of lead in precambrian granitic rocks of the taebaeg area. Journal of the Geological Society of Korea, 29/4, 387-395.
  16. Slack, J.F., 1996. Tourmaline associations with hydrothermal ore deposits. In: Grew, E.S., Anovitz, L.M. (Eds.), Boron: Mineralogy, Petrology and Geochemistry, Rev. Mineral, vol. 33. Mineral Soc America, Washington, DC, pp. 559-644.
  17. Slack, J.F. and Trumbull, R.B., 2011, Tourmaline as a recorder of ore-forming processes. Elements 7, 321-326. https://doi.org/10.2113/gselements.7.5.321.
  18. Vermeesch, P., 2018, Isoplot R: A free and open toolbox for geochronology, Geoscience Frontiers, 9/5, 1479-1493, https://doi.org/10.1016/j.gsf.2018.04.001.
  19. Vlach, S.R.F., 2022, On the morphology and geochemistry of hydrothermal crypto- and microcrystalline zircon aggregates in a peralkaline granite. Minerals, 12, 628. https://doi.org/10.3390/min12050628
  20. Yun, H.S. and Lee, D.S., 1986, Petrochemical study on the precambrian granitic rocks in the basement area of ham-baeg basin. Journal of Korean Institute of Mining Geology, 19/1, 35-55.