DOI QR코드

DOI QR Code

Room Temperature Imprint Lithography for Surface Patterning of Al Foils and Plates

알루미늄 박 및 플레이트 표면 미세 패터닝을 위한 상온 임프린팅 기술

  • Tae Wan Park (Department of Materials Science and Engineering, Pukyong National University) ;
  • Seungmin Kim (RanoM R&D center, RanoM Co., Ltd.) ;
  • Eun Bin Kang (Department of Materials Science and Engineering, Pukyong National University) ;
  • Woon Ik Park (Department of Materials Science and Engineering, Pukyong National University)
  • Received : 2023.06.23
  • Accepted : 2023.06.30
  • Published : 2023.06.30

Abstract

Nanoimprint lithography (NIL) has attracted much attention due to its process simplicity, excellent patternability, process scalability, high productivity, and low processing cost for pattern formation. However, the pattern size that can be implemented on metal materials through conventional NIL technologies is generally limited to the micro level. Here, we introduce a novel hard imprint lithography method, extreme-pressure imprint lithography (EPIL), for the direct nano-to-microscale pattern formation on the surfaces of metal substrates with various thicknesses. The EPIL process allows reliable nanoscopic patterning on diverse surfaces, such as polymers, metals, and ceramics, without the use of ultraviolet (UV) light, laser, imprint resist, or electrical pulse. Micro/nano molds fabricated by laser micromachining and conventional photolithography are utilized for the nanopatterning of Al substrates through precise plastic deformation by applying high load or pressure at room temperature. We demonstrate micro/nanoscale pattern formation on the Al substrates with various thicknesses from 20 ㎛ to 100 mm. Moreover, we also show how to obtain controllable pattern structures on the surface of metallic materials via the versatile EPIL technique. We expect that this imprint lithography-based new approach will be applied to other emerging nanofabrication methods for various device applications with complex geometries on the surface of metallic materials.

나노임프린트 리소그래피(Nanoimprint lithography, NIL) 공정은 패턴 형성을 위한 공정 단순성, 우수한 패턴 형성, 공정의 확장성, 높은 생산성 및 저렴한 공정 비용이라는 이유들로 인해 많은 관심을 받고 있다. 그러나, 기존의 NIL 기술들을 통해 금속 소재 상 구현할 수 있는 패턴의 크기는 일반적으로 마이크로 수준으로 제한적이다. 본 연구에서는, 다양한 두께의 금속 기판 표면에 마이크로/나노 스케일 패턴을 직접적으로 형성하기 위한 극압 임프린트 리소그래피(extremepressure imprint lithography, EPIL) 방법을 소개하고자 한다. EPIL 공정은 자외선, 레이저, 임프린트 레지스트 또는 전기적 펄스 등의 외부 요인을 사용하지 않고 고분자, 금속, 세라믹과 같은 다양한 재료의 표면에 신뢰성 있는 나노 수준의 패터닝을 가능하게 한다. 레이저 미세가공 및 포토리소그래피로 제작된 마이크로/나노 몰드는 상온에서 높은 하중 혹은 압력을 가해 정밀한 소성변형 기반 Al 기판의 나노 패터닝에 활용된다. 20 ㎛ 부터 100 ㎛까지 다양한 두께를 갖는 Al 기판 상 마이크로/나노 스케일의 패턴 형성을 보여주고자 한다. 또한, 다목적 EPIL 기술을 통해 금속 재료 표면에서 그 형상을 제어하는 방법 역시 실험적으로 증명된다. 임프린트 리소그래피 기반 본 접근법은 복잡한 형상이 포함된 금속 재료의 표면을 요구하는 다양한 소자 응용을 위한 나노 제조 방법에 적용될 수 있을 것으로 기대한다.

Keywords

Acknowledgement

이 논문은 부경대학교 자율창의학술연구비(2022년, 202214030001)에 의하여 연구되었음.

References

  1. S. L. Hem and H. HogenEsch, "Relationship between physical and chemical properties of aluminum-containing adjuvants and immunopotentiation", Expert Rev. Vaccines, 6, 685 (2007).
  2. Y. Chen, S. Zhao, H. Ma, H. Wang, L. Hua, and S. Fu, "Analysis of hydrogen embrittlement on aluminum alloys for vehicle-mounted hydrogen storage tanks: A review", Metals, 11, 1303 (2021).
  3. T. Shi, J. Liang, X. Li, C. Zhang, and H. Yang, "Improving the Corrosion Resistance of Aluminum Alloy by Creating a Superhydrophobic Surface Structure through a Two-Step Process of Etching Followed by Polymer Modification", Polymers, 14, 4509 (2022).
  4. D. Luo, F. Li, and G. Xing, "Corrosion resistance of 6061-T6 aluminium alloy and its feasibility of near-surface reinforcements in concrete structure", Rev. Adv. Mater. Sci., 61, 638 (2022).
  5. C. Cepeda-Jimenez, O. A. Ruano, M. Carsi, and F. Carreno, "Study of hot deformation of an Al-Cu-Mg alloy using processing maps and microstructural characterization", Mater. Sci. Eng. A, 552, 530 (2012).
  6. H. Kang, S. Kim, B. Jang, and H. Kim, "High Temperature Deformation and Microstructural Evolution of Homogenized AA 2026 Alloy", Korean J. Met. Mater., 61, 338 (2023).
  7. K. U. Bhat, D. B. Panemangalore, S. B. Kuruveri, M. John, and P. L. Menezes, "Surface modification of 6xxx Series aluminum alloys", Coatings, 12, 180 (2022).
  8. W. Xing, Z. Li, H. Yang, X. Li, X. Wang, and N. Li, "Anti-icing aluminum alloy surface with multi-level micro-nano textures constructed by picosecond laser", Mater. Des., 183, 108156 (2019).
  9. D. Lee, M. Go, S. Son, M. Kim, T. Badloe, H. Lee, J. K. Kim, and J. Rho, "Sub-ambient daytime radiative cooling by silica-coated porous anodic aluminum oxide", Nano Energy, 79, 105426 (2021).
  10. Z. Huang, H. Li, Z. Yang, H. Wang, J. Ding, L. Xu, Y. Tian, D. Mitlin, J. Ding, and W. Hu, "Nanosecond laser lithography enables concave-convex zinc metal battery anodes with ultrahigh areal capacity", Energy Storage Mater., 51, 273 (2022).
  11. H. Wu, Y. Jiao, C. Zhang, C. Chen, L. Yang, J. Li, J. Ni, Y. Zhang, C. Li, and Y. Zhang, "Large area metal micro-/nanogroove arrays with both structural color and anisotropic wetting fabricated by one-step focused laser interference lithography", Nanoscale, 11, 4803 (2019).
  12. B. Radha, S. H. Lim, M. S. Saifullah, and G. U. Kulkarni, "Metal hierarchical patterning by direct nanoimprint lithography", Sci. Rep., 3, 1 (2013).
  13. A. Kumar, K. Hsu, K. Jacobs, P. Ferreira, and N. Fang, "Direct metal nano-imprinting using an embossed solid electrolyte stamp", Nanotechnology, 22, 155302 (2011).
  14. S. Y. Chou, P. R. Krauss, and P. J. Renstrom, "Nanoimprint lithography", J. Vac. Sci. Technol. B, 14, 4129 (1996).
  15. R. Nishitsuji, K. Sueyoshi, H. Hisamoto, T. Endo, "Fabrication of Gold Nanostructures on Quartz Crystal Microbalance Surface Using Nanoimprint Lithography for Sensing Applications", Micromachines 13, 1430 (2022).
  16. W. I. Park, T. W. Park, Y. J. Choi, S. Lee, S. Ryu, X. Liang, and Y. S. Jung, "Extreme-Pressure Imprint Lithography for Heat and Ultraviolet-Free Direct Patterning of Rigid Nanoscale Features", ACS Nano, 15, 10464 (2021).
  17. J. W. Yi and M. Jeong, "A Study on the Surface and Manufacturing Method of Nanostructure for Amplification of Plasmonic Phenomena of Nanoparticles", J. Microelectron. Packag. Soc., 29(1), 55 (2022).
  18. J. Liu, S. Yang, Z. Liu, H. Guo, Z. Liu, Z. Xu, C. Liu, and L. Wang, "Patterning sub-30 µm liquid metal wires on PDMS substrates via stencil lithography and pre-stretching", J. Micromech. Microeng., 29, 095001 (2019).
  19. T. W. Park and W. I. Park, "Formation of Surface-Wrinkled Metal Nanosheets via Thermally Assisted Nanotransfer Printing", Korean J. Met. Mater., 59, 880 (2019).
  20. H. Chen, S. Chuang, H. Cheng, C. Lin, T. Chu, "Directly patterning metal films by nanoimprint lithography with low-temperature and low-pressure", Microelectron. Eng., 83, 893 (2006).
  21. T. W. Park, M. Byun, H. Jung, and W. I. Park, "Effect of Surface Roughness on the Formation of Nano-to-Mirco Patterns Using Pattern Transfer Printing", Korean J. Met. Mater., 58, 26 (2019). https://doi.org/10.22974/JKDA.2019.58.1.002
  22. H. Gao, Y. Hu, Y. Xuan, J. Li, Y. Yang, R. V. Martinez, C. Li, J. Luo, M. Qi, and G. J. Cheng, "Large-scale nanoshaping of ultrasmooth 3D crystalline metallic structures", Science, 346, 1352 (2014).
  23. S. Barcelo and Z. Li, "Nanoimprint lithography for nanodevice fabrication", Nano Converg., 3, 1 (2016).
  24. H. Lee, S. Hong, K. Yang, and K. Choi, "Fabrication of 100nm metal lines on flexible plastic substrate using ultraviolet curing nanoimprint lithography", Appl. Phys. Lett., 88, 143112 (2006).
  25. H. Mao, L. Zhang, L. Wen, L. Huang, L. Tan, and Y. Chen, "Nanoimprint Lithography-Dependent Vertical Composition Gradient in Pseudo-Planar Heterojunction Organic Solar Cells Combined with Sequential Deposition", Adv. Funct. Mater., 33, 2209152 (2023).
  26. S. H. Ahn and L. J. Guo, "Large-area roll-to-roll and roll-to-plate nanoimprint lithography: a step toward high-throughput application of continuous nanoimprinting", ACS Nano, 3, 2304 (2009).
  27. C. H. Moon, K.-S. Han, M. Kim, D. K. Oh, S. Yi, T. Kim, H. Kim, J. Hwang, J. G. Nam, and D.-E. Lee, "Scaling up the sub-50 nm-resolution roll-to-roll nanoimprint lithography process via large-area tiling of flexible molds and uniform linear UV curing", J. Mech. Sci. Technol., 37, 271 (2023).