DOI QR코드

DOI QR Code

Review on Oxidation Resistance Technology for Copper Nanowire Transparent Electrodes

구리 나노와이어 투명 전극의 산화 방지 기술

  • Gieop Lee (Department of Chemical Engineering, Chonnam National University) ;
  • Hokyun Rho (Energy Convergence Core Facility, Chonnam National University) ;
  • Hyung Gu Kim (Photonic Semiconductor Research Center, Korea Photonics Technology Institute) ;
  • Jun-Seok Ha (Department of Chemical Engineering, Chonnam National University)
  • 이기업 (전남대학교 화학공학과) ;
  • 노호균 (에너지융복합전문핵심연구지원센터) ;
  • 김형구 (한국광기술원 광반도체연구센터) ;
  • 하준석 (전남대학교 화학공학과)
  • Received : 2023.06.14
  • Accepted : 2023.06.30
  • Published : 2023.06.30

Abstract

CuNWs(Copper nanowires) are attracting attention as a transparent electrode material because of their excellent electrical conductivity, high mechanical flexibility, and cost-effectiveness. However, since copper nanowires are easily oxidized, there is a disadvantage that properties of the transparent electrode may be deteriorated due to this, and researches are being conducted to improve this. Accordingly, in this review, various methods and studies to prevent oxidation and improve stability of copper nanowire transparent electrodes by using coating materials such as carbon-based materials, metals, and conductive polymers are introduced. Through this, we intend to provide solutions to solve the problem of development and oxidation of copper nanowire-based technology.

구리 나노와이어(CuNW)는 전기 전도도가 우수할 뿐만 아니라 높은 기계적 유연성과 비용 효율성 등의 장점이 있다. 그러나 구리 나노와이어는 산화가 쉽게 일어나기 때문에 투명 전극의 특성까지도 저하될 수 있다는 단점 또한 존재한다. 따라서, 이러한 문제점을 해결하기 위한 연구들이 진행되고 있다. 이에 본 고에서는 탄소 기반 물질, 금속, 전도성 고분자 등의 코팅용 소재를 활용하여 구리 나노와이어 투명전극의 산화를 방지하고 안정성을 향상시키기 위한 다양한 방법과 연구를 소개한다. 이를 통해 구리 나노와이어 기반 기술의 발전과 산화에 대한 문제를 해결할 수 있는 방안들을 제공하고자 한다.

Keywords

Acknowledgement

본 연구는 산업통상자원부의 한국산업기술평가원(KEIT)(20017391, 소재부품기술개발사업)과 2019년도 교육부의 재원으로 한국기초과학지원연구원 국가연구시설 장비진흥센터의 지원을 받은 기초과학연구역량강화사업 핵심연구지원센터 조성 지원 과제(과제번호 2019R1A6C1010024)에서 에너지융복합전문핵심연구지원센터를 조성하여 수행된 연구결과임.

References

  1. X. Li, S. Yu, L. Zhao, M. Wu, and H. Dong, "Hybrid PEDOT:PSS to obtain high-performance Ag NW-based flexible transparent electrodes for transparent heaters", J. Mater. Sci. Mater. Electron., 31, 8106-8115 (2020).  https://doi.org/10.1007/s10854-020-03351-5
  2. Y. Huang, Y. Liu, K. Youssef, K. Tong, Y. Tian, Q. Pei, "A Solution Processed Flexible Nanocomposite Substrate with Efficient Light Extraction via Periodic Wrinkles for White Organic Light-Emitting Diodes", Adv. Opt. Mater., 6, 1-9 (2018). 
  3. S. Ye, A. R. Rathmell, Z. Chen, I. E. Stewart, and B. J. Wiley, "Metal nanowire networks: The next generation of transparent conductors", Adv. Mater., 26, 6670-6687 (2014).  https://doi.org/10.1002/adma.201402710
  4. S. Yu, W. Zhang, L. Li, H. Dong, D. Xu, Y. Jin, "Structural, electrical, photoluminescence and optical properties of n-type conducting, phosphorus-doped ZnO thin films prepared by pulsed laser deposition", Appl. Surf. Sci., 298, 44-49 (2014).  https://doi.org/10.1016/j.apsusc.2014.01.037
  5. S. K. Hau, H. L. Yip, J. Zou, and A. K. Y. Jen, "Indium tin oxide-free semi-transparent inverted polymer solar cells using conducting polymer as both bottom and top electrodes", Org. Electron., 10, 1401-1407 (2009).  https://doi.org/10.1016/j.orgel.2009.06.019
  6. H. Wang, C. Wu, Y. Huang, F. Sun, N. Lin, A. M. Soomro, Z. Zhong, X. Yang, X. Chen, J. Kang, and D. Cai, "One-Pot Synthesis of Superfine Core-Shell Cu@metal Nanowires for Highly Tenacious Transparent LED Dimmer", ACS Appl. Mater. Interfaces, 8, 28709-28717 (2016).  https://doi.org/10.1021/acsami.6b09009
  7. S. Walia, R. Gupta, K. D. M. Rao, and G. U. Kulkarni, "Transparent Pd Wire Network-Based Areal Hydrogen Sensor with Inherent Joule Heater", ACS Appl. Mater. Interfaces, 8, 23419-23424 (2016).  https://doi.org/10.1021/acsami.6b08275
  8. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, "Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios", ACS Nano, 3, 1767-1774 (2009).  https://doi.org/10.1021/nn900348c
  9. D. S. Hecht, L. Hu, and G. Irvin, "Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures", Adv. Mater., 23, 1482-1513 (2011).  https://doi.org/10.1002/adma.201003188
  10. H. Park, S. Chang, X. Zhou, J. Kong, T. Palacios, and S. Gradecak, "Flexible graphene electrode-based organic photovoltaics with record-high efficiency", Nano Lett., 14, 5148-5154 (2014).  https://doi.org/10.1021/nl501981f
  11. P. Kumar, K. L. Woon, W. S. Wong, M. S. Mohamed Saheed, and Z. A. Burhanudin, "Hybrid film of single-layer graphene and carbon nanotube as transparent conductive electrode for organic light emitting diode", Synth. Met., 257, 116186 (2019). 
  12. Y. G. Seol, T. Q. Trung, O. J. Yoon, I. Y. Sohn, and N. E. Lee, "Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes", J. Mater. Chem., 22, 23759-23766 (2012).  https://doi.org/10.1039/c2jm33949h
  13. Z. Guo, C. Sun, J. Zhao, Z. Cai, and F. Ge, "Low-Voltage Electrical Heater Based on One-Step Fabrication of Conductive Cu Nanowire Networks for Application in Wearable Devices", Adv. Mater. Interfaces, 8, 1-11 (2021). 
  14. H. Zhang, S. Wang, Y. Tian, J. Wen, C. Hang, Z. Zheng, Y. Huang, S. Ding, and C. Wang, "High-efficiency extraction synthesis for high-purity copper nanowires and their applications in flexible transparent electrodes", Nano Mater. Sci., 2, 164-171 (2020).  https://doi.org/10.1016/j.nanoms.2019.09.007
  15. N. Liu, A. Chortos, T. Lei, L. Jin, T. R. Kim, W.-G. Bae, C. Zhu, S. Wang, R. Pfattner, X. Chen, R. Sinclair, and Z. Bao, "Ultratransparent and stretchable graphene electrodes", Sci. Adv., 3, 1700159 (2017). 
  16. J. Bang, S. Coskun, K. R. Pyun, D. Doganay, S. Tunca, S. Koylan, D. Kim, H. E. Unalan, and S. H. Ko, "Advances in protective layer-coating on metal nanowires with enhanced stability and their applications", Appl. Mater. Today, 22, 100909 (2021). 
  17. L. Hu, H. Wu, and Y. Cui, "Metal nanogrids, nanowires, and nanofibers for transparent electrodes", MRS Bull., 36, 760-765 (2011).  https://doi.org/10.1557/mrs.2011.234
  18. I. E. Stewart, A. R. Rathmell, L. Yan, S. Ye, P. F. Flowers, W. Youbc and B. J. Wiley, "Solution-processed copper-nickel nanowire anodes for organic solar cells", Nanoscale, 6, 5980-5988 (2014).  https://doi.org/10.1039/c4nr01024h
  19. S. Ding, J. Jiu, Y. Tian, T. Sugahara, S. Nagao, and K. Suganuma, "Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air", Phys. Chem. Chem. Phys., 17, 31110-31116 (2015).  https://doi.org/10.1039/C5CP04582G
  20. H. Xu, H. Wang, C. Wu, N. Lin, A. M. Soomro, H. Guo, C. Liu, X. Yang, Y. Wu, D. Cai, and J. Y. Kang, "Direct synthesis of graphene 3D-coated Cu nanosilks network for antioxidant transparent conducting electrode", Nanoscale, 7, 10613-10621 (2015).  https://doi.org/10.1039/C5NR01711D
  21. A. Aliprandi, T. Moreira, C. Anichini, M.-A. Stoeckel, M. Eredia, U. Sassi, M. Bruna, C. Pinheiro, C. A. T. Laia, S. Bonacchi, and P. Samori, "Hybrid Copper-Nanowire-Reduced-Graphene-Oxide Coatings: A "Green Solution", Toward Highly Transparent, Highly Conductive, and Flexible Electrodes for (Opto)Electronics", Adv. Mater., 29, 1-6 (2017). 
  22. Z. Niu, F. Cui, Y. Yu, N. Becknell, Y. Sun, G. Khanarian, D. Kim, L. Dou, A. Dehestani, K. Schierle-Arndt, and P. Yang, "Ultrathin Epitaxial Cu@Au Core-Shell Nanowires for Stable Transparent Conductors", J. Am. Chem. Soc., 139, 7348-7354 (2017).  https://doi.org/10.1021/jacs.7b02884
  23. Y. Jin, L. Li, Y. Cheng, L. Kong, Q. Pei, and F. Xiao, "Cohesively enhanced conductivity and adhesion of flexible silver nanowire networks by biocompatible polymer Sol-Gel transition", Adv. Funct. Mater., 25, 1581-1587 (2015).  https://doi.org/10.1002/adfm.201403293
  24. M. R. Abidian, D. H. Kim, and D. C. Martin, "Conducting-polymer nanotubes for controlled drug release", Adv. Mater., 18, 405-409 (2006).  https://doi.org/10.1002/adma.200501726
  25. L. Xu, Y. Yang, Z. W. Hu, and S. H. Yu, "Comparison Study on the Stability of Copper Nanowires and Their Oxidation Kinetics in Gas and Liquid", ACS Nano, 10, 3823-3834 (2016).  https://doi.org/10.1021/acsnano.6b00704
  26. Z. Liu, and Y. Bando, "Oxidation behaviour of copper nanorods", Chem. Phys. Lett., 378, 85-88 (2003).  https://doi.org/10.1016/S0009-2614(03)01253-3
  27. X. Zeng, P. Pan, H. Qi, Z. He, and J. Su, "Preparation of copper nanowires and thermal oxidation behaviour in dry oxygen", Surf. Innov., 10, 200-208 (2022).  https://doi.org/10.1680/jsuin.21.00033
  28. P. C. Hsu, H. Wu, T. J. Carney, M. T. McDowell, Y. Yang, E. C. Garnett, M. Li, L. Hu, and Y. Cui, "Passivation coating on electrospun copper nanofibers for stable transparent electrodes", ACS Nano, 6, 5150-5156 (2012).  https://doi.org/10.1021/nn300844g
  29. A. R. Rathmell, M. Nguyen, M. Chi, and B. J. Wiley, "Synthesis of oxidation-resistant cupronickel nanowires for transparent conducting nanowire networks", Nano Lett., 12, 3193-3199 (2012).  https://doi.org/10.1021/nl301168r
  30. I. Hong, S. Lee, D. Kim, H. Cho, Y. Roh, H. An, S. Hong, and S. H. Ko, "Study on the oxidation of copper nanowire network electrodes for skin mountable flexible, stretchable and wearable electronics applications", Nanotechnology, 30, 074001 (2019). 
  31. S. Chen, L. Brown, M. Levendorf, W. Cai, S.-Y. Ju, J. Edgeworth, X. Li, C. W. Magnuson, A. Velamakanni, R. D. Piner, J. Kang, J. Park, and R. S. Ruoff, "Oxidation Resistance of Graphene- Coated Cu and Cu / Ni Alloy", ACS Nano, 5, 1321-1327 (2011).  https://doi.org/10.1021/nn103028d
  32. A. Manikandan, L. Lee, Y.-C. Wang, C.-W. Chen, Y.-Z. Chen, H. Medina, J.-Y. Tseng, Z. M. Wang, and Y.-L. Chueh, "Graphene-coated copper nanowire networks as a highly stable transparent electrode in harsh environments toward efficient electrocatalytic hydrogen evolution reactions", J. Mater. Chem. A, 5, 13320-13328 (2017).  https://doi.org/10.1039/C7TA01767G
  33. X. Zhang, J. Wu, H. Liu, J. Wang, X. Zhao, and Z. Xie, "Efficient flexible polymer solar cells based on solution-processed reduced graphene oxide-Assisted silver nanowire transparent electrode", Org. Electron., 50, 255-263 (2017).  https://doi.org/10.1016/j.orgel.2017.07.055
  34. Z. Zhu, T. Mankowski, K. Balakrishnan, A. S. Shikoh, F. Touati, M. A. Benammar, M. Mansuripur, and C. M. Falco, "Ultrahigh Aspect Ratio Copper-Nanowire-Based Hybrid Transparent Conductive Electrodes with PEDOT:PSS and Reduced Graphene Oxide Exhibiting Reduced Surface Roughness and Improved Stability", ACS Appl. Mater. Interfaces, 7, 16223-16230 (2015).  https://doi.org/10.1021/acsami.5b01379
  35. D. M. Ye, G.-Z. Li, G.-G. Wang, Z.-Q. Lin, H.-L. Zhou, M. Han, Y.-L. Liu, and J.-C. Han, "One-pot synthesis of copper nanowire decorated by reduced graphene oxide with excellent oxidation resistance and stability", Appl. Surf. Sci., 467-468, 158-167 (2019).  https://doi.org/10.1016/j.apsusc.2018.10.136
  36. X. Xu, D. Yi, Z. Wang, J. Yu, Z. Zhang, R. Qiao, Z. Sun, Z. Hu, P. Gao, H. Peng, Z. Liu, D. Yu, E. Wang, Y. Jiang, F. Ding, and K. Liu, "Greatly Enhanced Anticorrosion of Cu by Commensurate Graphene Coating", Adv. Mater., 30, 1-7 (2018). 
  37. J. Wang, Z. Zhang, S. Wang, R. Zhang, Y. Guo, G. Cheng, Y. Gu, K. Liu, and K. Chen, "Superstable copper nanowire network electrodes by single-crystal graphene covering and their applications in flexible nanogenerator and light-emitting diode", Nano Energy, 71, 104638 (2020). 
  38. I. E. Stewart, S. Ye, Z. Chen, P. F. Flowers, and B. J. Wiley, "Synthesis of Cu-Ag, Cu-Au, and Cu-Pt Core-Shell Nanowires and Their Use in Transparent Conducting Films", Chem. Mater., 27, 7788-7794 (2015).  https://doi.org/10.1021/acs.chemmater.5b03709
  39. M. J. Catenacci, C. Reyes, M. A. Cruz, and B. J. Wiley, "Stretchable Conductive Composites from Cu-Ag Nanowire Felt", ACS Nano, 12, 3689-3698 (2018).  https://doi.org/10.1021/acsnano.8b00887
  40. D. H. Jiang, P.-C. Tsai, C.-C. Kuo, F.-C. Jhuang, H.-C. Guo, S.-P. Chen, Y.-C. Liao, T. Satoh, and S.-H. Tung, "Facile Preparation of Cu/Ag Core/Shell Electrospun Nanofibers as Highly Stable and Flexible Transparent Conductive Electrodes for Optoelectronic Devices", ACS Appl. Mater. Interfaces, 11, 10118-10127 (2019).  https://doi.org/10.1021/acsami.8b18366
  41. X. Xia, Y. Wang, A. Ruditskiy, and Y. Xia, "25th anniversary article: Galvanic replacement: A simple and versatile route to hollow nanostructures with tunable and well-controlled properties", Adv. Mater., 25, 6313-6333 (2013).  https://doi.org/10.1002/adma.201302820
  42. Y. Sun, and Y. Xia, "Alloying and Dealloying Processes Involved in the Preparation of Metal Nanoshells through a Galvanic Replacement Reaction", Nano Lett., 3, 1569-1572 (2003).  https://doi.org/10.1021/nl034765r
  43. R. Ojani, J. B. Raoof, and E. Hasheminejad, "One-step electroless deposition of Pd/Pt bimetallic microstructures by galvanic replacement on copper substrate and investigation of its performance for the hydrogen evolution reaction", Int. J. Hydrogen Energy, 38, 92-99 (2013).  https://doi.org/10.1016/j.ijhydene.2012.10.015
  44. B. Zhang, W. Li, J. Jiu, Y. Yang, J. Jing, K. Suganuma, and C.-F. Li, "Large-Scale and Galvanic Replacement Free Synthesis of Cu@Ag Core-Shell Nanowires for Flexible Electronics", Inorg. Chem., 58, 3374-3381 (2019).  https://doi.org/10.1021/acs.inorgchem.8b03460
  45. H. Zhang, S. Wang, C. Hang, and Y. Tian, "Joining of copper nanowires by electrodepositing silver layer for high-performance transparent electrode", Weld. World, 65, 1021-1030 (2021).  https://doi.org/10.1007/s40194-021-01066-7
  46. H. Zhang, S. Wang, Y. Tian, Y. Liu, J. Wen, Y. Huang, C. Hang, Z. Zheng, and C. Wang, "Electrodeposition fabrication of Cu@Ni core shell nanowire network for highly stable transparent conductive films", Chem. Eng. J., 390, 124495 (2020). 
  47. D. Mardiansyah, T. Badloe, K. Triyana, M. Q. Mehmood, N. Raeis-Hosseini, Y. Lee, H. Sabarman, K. Kim, and J. Rho, "Effect of temperature on the oxidation of Cu nanowires and development of an easy to produce, oxidation-resistant transparent conducting electrode using a PEDOT:PSS coating", Sci. Rep., 8, 1-9 (2018). 
  48. A. R. Rathmell, S. M. Bergin, Y. L. Hua, Z. Y. Li, and B. J. Wiley, "The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films", Adv. Mater., 22, 3558-3563 (2010).  https://doi.org/10.1002/adma.201000775
  49. J. Koo, S. Kwon, N. R. Kim, K. Shin, and H. M. Lee, "Ethylenediamine-Enhanced Oxidation Resistivity of a Copper Surface during Water-Based Copper Nanowire Synthesis", J. Phys. Chem. C, 120, 3334-3340 (2016).  https://doi.org/10.1021/acs.jpcc.5b10733
  50. J. Kim, J. You, B. Kim, T. Park, and E. Kim, "Solution processable and patternable poly(3,4-alkylenedioxythiophene)s for large-area electrochromic films", Adv. Mater., 23, 4168-4173 (2011).  https://doi.org/10.1002/adma.201101900
  51. B. Zhang, W. Li, Y. Yang, C. Chen, C.-F. Li, and K. Suganuma, "Fully embedded CuNWs/PDMS conductor with high oxidation resistance and high conductivity for stretchable electronics", J. Mater. Sci., 54, 6381-6392 (2019).  https://doi.org/10.1007/s10853-019-03333-x
  52. Y. Chen, J. Zou, S. J. Campbell, and G. Le Caer, "Boron nitride nanotubes: Pronounced resistance to oxidation", Appl. Phys. Lett., 84, 2430-2432 (2004).  https://doi.org/10.1063/1.1667278
  53. G. Liu, J. Wang, Y. Ge, Y. Wang, S. Lu, Y. Zhao, Y. Tang, A. M. Soomro, Q. Hong, X. Yang, F. Xu, S. Li, L.-J. Chen, D. Cai, and J. Kang, "Cu Nanowires Passivated with Hexagonal Boron Nitride: An Ultrastable, Selectively Transparent Conductor", ACS Nano, 14, 6761-6773 (2020). https://doi.org/10.1021/acsnano.0c00109