DOI QR코드

DOI QR Code

Association between shift work and serum homocysteine level in female electronic manufacturing services workers

  • Jae Won Lim (Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine) ;
  • Chan Woo Kim (Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine) ;
  • Hyoung Ouk Park (Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine) ;
  • Eui Yup Chung (Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine) ;
  • Changho Chae (Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine) ;
  • JunSeok Son (Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine) ;
  • Young Hoo Shin (Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine) ;
  • Seung Hyun Park (Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine) ;
  • Sang Moon Choi (Department of Occupational and Environmental Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine)
  • Received : 2022.09.13
  • Accepted : 2023.02.06
  • Published : 2023.12.31

Abstract

Background: Shift work has been shown to increase the risk of cardiovascular disease (CVD) based on several evidences. The classic risk factors of CVD include age, hypertension, smoking, obesity and diabetes. Recently, the serum homocysteine level has been reported to be a valuable indicator of CVD risk. This study aimed to determine the variation in serum homocysteine level as a cardiovascular risk indicator among female workers according to shift work. Methods: The data of regular health examination of workers at an electronic manufacturing services company in Yeongnam region, South Korea in 2019 were examined in this study. The investigation was based on a cross-sectional study conducted on 697 female workers (199 day workers and 498 shift workers). The sociodemographic and biochemical characteristics were compared between day workers and shift workers. Through a logistic regression analysis, the odds ratio (OR) of the increased serum homocysteine level in relation to shift work was determined. Results: Compared to female day workers, female shift workers showed significantly higher level of serum homocysteine (8.85 ± 2.16 vs. 9.42 ± 2.04 μmol/mL; p = 0.001). The OR of day workers against shift workers was 1.81 (95% confidence interval [CI]: 1.25-2.63). With the adjustment of variables that may influence the level of serum homocysteine, the adjusted OR was 1.68 (95% CI: 1.09-2.60). Conclusions: The serum homocysteine level was significantly higher in shift workers than in day workers. It is thus likely to be a useful predictor of CVD in shift workers.

Keywords

References

  1. Current status of non-communicable disease in the Republic of Korea. http://www.cdc.go.kr/board/board.es?mid=a20602010000&bid=0034&list_no=711878&act=view#. Updated 2021. Accessed September 8, 2022.
  2. Dahlof B. Cardiovascular disease risk factors: epidemiology and risk assessment. Am J Cardiol 2010;105(1 Suppl):3A-9A. 
  3. Knutsson A. Methodological aspects of shift-work research. Chronobiol Int 2004;21(6):1037-47. 
  4. Costa G. Shift work and occupational medicine: an overview. Occup Med (Lond) 2003;53(2):83-8. 
  5. Rosa RR, Colligan M. Plain Language About Shiftwork. Washington, D.C., USA: U.S. Department of Health and Human Services; 1997.
  6. Boggild H, Knutsson A. Shift work, risk factors and cardiovascular disease. Scand J Work Environ Health 1999;25(2):85-99. 
  7. Torquati L, Mielke GI, Brown WJ, Kolbe-Alexander T. Shift work and the risk of cardiovascular disease. A systematic review and meta-analysis including dose-response relationship. Scand J Work Environ Health 2018;44(3):229-38. 
  8. Humphrey LL, Fu R, Rogers K, Freeman M, Helfand M. Homocysteine level and coronary heart disease incidence: a systematic review and meta-analysis. Mayo Clin Proc 2008;83(11):1203-12. 
  9. Wald DS, Law M, Morris JK. Homocysteine and cardiovascular disease: evidence on causality from a meta-analysis. BMJ 2002;325(7374):1202. 
  10. Wald DS, Wald NJ, Morris JK, Law M. Folic acid, homocysteine, and cardiovascular disease: judging causality in the face of inconclusive trial evidence. BMJ 2006;333(7578):1114-7. 
  11. Kang D, Kang SK, Choi WJ, Lee SH, Lee JH, Kwak K. Association between shift work and hyperhomocysteinemia in male workers. Ann Occup Environ Med 2019;31(1):e1. 
  12. Moon HW, Whang DH, Ko YJ, Joo SY, Yun YM, Hur M, et al. Reference interval and determinants of the serum homocysteine level in a Korean population. J Clin Lab Anal 2011;25(5):317-23. 
  13. Masip J, Germa Lluch JR. Alcohol, health and cardiovascular disease. Rev Clin Esp (Barc) 2021;221(6):359-68. 
  14. Banks E, Joshy G, Korda RJ, Stavreski B, Soga K, Egger S, et al. Tobacco smoking and risk of 36 cardiovascular disease subtypes: fatal and non-fatal outcomes in a large prospective Australian study. BMC Med 2019;17(1):128. 
  15. Myers J. Cardiology patient pages. Exercise and cardiovascular health. Circulation 2003;107(1):e2-5. 
  16. Maron BA, Loscalzo J. The treatment of hyperhomocysteinemia. Annu Rev Med 2009;60(1):39-54. 
  17. Rasmussen K, Moller J, Lyngbak M, Pedersen AM, Dybkjaer L. Age- and gender-specific reference intervals for total homocysteine and methylmalonic acid in plasma before and after vitamin supplementation. Clin Chem 1996;42(4):630-6. 
  18. Brandao MP, Pimentel FL, Cardoso MF. Serum homocysteine concentrations in Portuguese young adults reference interval. Acta Med Port 2011;24(2):271-8. 
  19. Stampfer MJ, Malinow MR, Willett WC, Newcomer LM, Upson B, Ullmann D, et al. A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA 1992;268(7):877-81. 
  20. Nygard O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med 1997;337(4):230-6.
  21. Dhindsa DS, Khambhati J, Schultz WM, Tahhan AS, Quyyumi AA. Marital status and outcomes in patients with cardiovascular disease. Trends Cardiovasc Med 2020;30(4):215-20. 
  22. Winkleby MA, Jatulis DE, Frank E, Fortmann SP. Socioeconomic status and health: how education, income, and occupation contribute to risk factors for cardiovascular disease. Am J Public Health 1992;82(6):816-20. 
  23. Ambrose JA, Barua RS. The pathophysiology of cigarette smoking and cardiovascular disease: an update. J Am Coll Cardiol 2004;43(10):1731-7. 
  24. Lanier JB, Bury DC, Richardson SW. Diet and physical activity for cardiovascular disease prevention. Am Fam Physician 2016.93(11):919-24. 
  25. North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res 2012;110(8):1097-108. 
  26. Costantino S, Paneni F, Cosentino F. Ageing, metabolism and cardiovascular disease. J Physiol 2016;594(8):2061-73. 
  27. Martins PJ, D'Almeida V, Vergani N, Perez AB, Tufik S. Increased plasma homocysteine levels in shift working bus drivers. Occup Environ Med 2003;60(9):662-6. 
  28. Zhang S, Wang Y, Li Q, Wang Z, Wang H, Xue C, et al. Different exposure metrics of rotating night shift work and hyperhomocysteinaemia among Chinese steelworkers: a cross-sectional study. BMJ Open 2020;10(12):e041576. 
  29. Copertaro A, Bracci M, Barbaresi M. Assessment of plasma homocysteine levels in shift healthcare workers. Monaldi Arch Chest Dis 2008;70(1):24-8. 
  30. Karolczak K, Olas B. Mechanism of action of homocysteine and its thiolactone in hemostasis system. Physiol Res 2009;58(5):623-33. 
  31. Lentz SR, Piegors DJ, Fernandez JA, Erger RA, Arning E, Malinow MR, et al. Effect of hyperhomocysteinemia on protein C activation and activity. Blood 2002;100(6):2108-12. 
  32. Toroser D, Sohal RS. Age-associated perturbations in glutathione synthesis in mouse liver. Biochem J 2007;405(3):583-9. 
  33. Zhang D, Chen Y, Xie X, Liu J, Wang Q, Kong W, et al. Homocysteine activates vascular smooth muscle cells by DNA demethylation of platelet-derived growth factor in endothelial cells. J Mol Cell Cardiol 2012;53(4):487-96. 
  34. Zhao J, Chen H, Liu N, Chen J, Gu Y, Chen J, et al. Role of hyperhomocysteinemia and hyperuricemia in pathogenesis of atherosclerosis. J Stroke Cerebrovasc Dis 2017;26(12):2695-9. 
  35. Puttonen S, Harma M, Hublin C. Shift work and cardiovascular disease - pathways from circadian stress to morbidity. Scand J Work Environ Health 2010;36(2):96-108. 
  36. Aisbett B, Condo D, Zacharewicz E, Lamon S. The impact of shiftwork on skeletal muscle health. Nutrients 2017;9(3):248. 
  37. Ostrakhovitch EA, Tabibzadeh S. Homocysteine in chronic kidney disease. Adv Clin Chem 2015;72:77-106. 
  38. Karmin O , Siow YL. Metabolic imbalance of homocysteine and hydrogen sulfide in kidney disease. Curr Med Chem 2018;25(3):367-77.