DOI QR코드

DOI QR Code

Relationship between shellfish consumption and urinary phthalate metabolites: Korean National Environmental Health Survey (KoNEHS) cycle 3 (2015-2017)

  • Jisoo Kang (Department of Occupational and Environmental Medicine, Soonchunhyang University Hospital) ;
  • Seong-yong Cho (Department of Occupational and Environmental Medicine, Soonchunhyang University Hospital) ;
  • Jinseok Kim (Department of Occupational and Environmental Medicine, Soonchunhyang University Hospital) ;
  • Seongyong Yoon (Department of Occupational and Environmental Medicine, Soonchunhyang University Hospital) ;
  • Jong-min An (Department of Occupational and Environmental Medicine, Soonchunhyang University Hospital) ;
  • Gayoung Kim (Department of Occupational and Environmental Medicine, Soonchunhyang University Hospital) ;
  • Si young Kim (Department of Occupational and Environmental Medicine, Soonchunhyang University Hospital)
  • Received : 2022.09.21
  • Accepted : 2023.01.02
  • Published : 2023.12.31

Abstract

Background: Phthalates are endocrine disrupting chemicals that are widely used in the production of items of daily life such as in polyvinylchloride plastics, insecticides, and medical devices. This study aimed to determine the association between phthalate exposure and shellfish consumption using data from the Korean National Environmental Health Survey (KoNEHS) cycle 3 (2015-2017), which is a nationally representative survey. Methods: In this study, we analyzed the KoNEHS cycle 3 data of 3,333 (1,526 men and 1,807 women) adults aged more than 19 years. Data related to the variables of sociodemographic factors, health-related behaviors, dietary factors, seafood consumption frequency, and urinary phthalate metabolites concentrations were collected. The concentrations of urinary phthalate metabolites of all the participants were divided into quartiles to define high and low concentration groups based on the 75th percentile concentration. A χ2 test was conducted to analyze the distribution of independent variables. To analyze the relationship between shellfish consumption and phthalate exposure, the odds ratios (ORs) were calculated using logistic regression analysis. Results: Total adults with shellfish consumption frequency of over once a week showed the following adjusted ORs for high concentrations of the following metabolites compared with the group that consumed shellfish once a week or less: 1.43 (95% confidence interval [CI]: 1.01-2.06) for mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), 1.43 (95% CI: 1.01-2.03) for mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), 1.57 (95% CI: 1.10-2.24) for ∑di-2-ethylhexyl phthalate (∑DEHP), 2.01 (95% CI: 1.46-2.77) for mono-carboxyoctyl phthalate (MCOP), 1.56 (95% CI: 1.11-2.18) for mono-carboxy-isononly phthalate (MCNP), and 2.57 (95% CI: 1.85-3.56) for mono (3-carboxypropyl) phthalate (MCPP). Conclusions: The concentrations of urinary phthalate metabolites (MEOHP, MECPP, ∑DEHP, MCOP, MCNP, and MCPP) were higher in adults with a higher frequency of shellfish consumption.

Keywords

Acknowledgement

We appreciate National Institute of Environmental Research making available the raw data of Korean National Environmental Health Survey.

References

  1. Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF. A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health 2020;17(4):1212.
  2. Hong SK, Nam HS, Jung KK, Kang IH, Kim TS, Cho SE, et al. Development and validation of on-line column switching HPLC-MS/MS method for 10 phthalate metabolites in human urine. J Environ Health Sci 2010;36(6):510-7.
  3. Schettler T. Human exposure to phthalates via consumer products. Int J Androl 2006;29(1):134-9.
  4. Choi J, Kim J, Choi G, Kim K. Relationship between dietary habits and urinary phthalate mtabolite concentrations in elementary school children. J Environ Health Sci 2018;44(5):433-43.
  5. Duty SM, Silva MJ, Barr DB, Brock JW, Ryan L, Chen Z, et al. Phthalate exposure and human semen parameters. Epidemiology 2003;14(3):269-77.
  6. Yuan G, Zeng Y, Hu G, Liu Y, Wei L, Liu P, et al. Inverse association of certain seminal phthalate metabolites with semen quality may be mediated by androgen synthesis: a cross-sectional study from the South China. Environ Int 2021;151:106459.
  7. Wang Y, Qian H. Phthalates and their impacts on human health. Healthcare (Basel) 2021;9(5):603.
  8. Jobling S, Reynolds T, White R, Parker MG, Sumpter JP. A variety of environmentally persistent chemicals, including some phthalate plasticizers, are weakly estrogenic. Environ Health Perspect 1995;103(6):582-7.
  9. Lopez-Carrillo L, Hernandez-Ramirez RU, Calafat AM, Torres-Sanchez L, Galvan-Portillo M, Needham LL, et al. Exposure to phthalates and breast cancer risk in northern Mexico. Environ Health Perspect 2010;118(4):539-44.
  10. Mughees M, Chugh H, Wajid S. Mechanism of phthalate esters in the progression and development of breast cancer. Drug Chem Toxicol 2022;45(3):1021-5.
  11. Lind PM, Zethelius B, Lind L. Circulating levels of phthalate metabolites are associated with prevalent diabetes in the elderly. Diabetes Care 2012;35(7):1519-24.
  12. Kim SH, Park MJ. Phthalate exposure and childhood obesity. Ann Pediatr Endocrinol Metab 2014;19(2):69-75.
  13. Wittassek M, Angerer J. Phthalates: metabolism and exposure. Int J Androl 2008;31(2):131-8.
  14. Teitelbaum SL, Britton JA, Calafat AM, Ye X, Silva MJ, Reidy JA, et al. Temporal variability in urinary concentrations of phthalate metabolites, phytoestrogens and phenols among minority children in the United States. Environ Res 2008;106(2):257-69.
  15. Hidalgo-Serrano M, Borrull F, Marce RM, Pocurull E. Phthalate esters in marine ecosystems: analytical methods, occurrence and distribution. Trends Analyt Chem 2022;151:116598.
  16. Li J, Lusher AL, Rotchell JM, Deudero S, Turra A, Brate IL, et al. Using mussel as a global bioindicator of coastal microplastic pollution. Environ Pollut 2019;244:522-33.
  17. Li J, Qu X, Su L, Zhang W, Yang D, Kolandhasamy P, et al. Microplastics in mussels along the coastal waters of China. Environ Pollut 2016;214:177-84.
  18. Bartolome L, Etxebarria N, Martinez-Arkarazo I, Raposo JC, Usobiaga A, Zuloaga O, et al. Distribution of organic microcontaminants, butyltins, and metals in mussels from the Estuary of Bilbao. Arch Environ Contam Toxicol 2010;59(2):244-54.
  19. Ding J, Sun C, He C, Li J, Ju P, Li F. Microplastics in four bivalve species and basis for using bivalves as bioindicators of microplastic pollution. Sci Total Environ 2021;782:146830.
  20. Korean National Institute of Environmental Research. Guidelines for Using Raw Materials for Korean National Environmental Health Survey (Adult) - The Third Stage ('15~'17). Incheon: Korean National Institute of Environmental Research; 2019, 5-31.
  21. Korean National Institute of Environmental Research. Environmental Hazardous Materials Analysis Manual (Organic compounds) in Korean National Environmental Health Survey (Adult) - The Third Stage ('15~'17). Incheon: Korean National Institute of Environmental Research; 2019, 36-59.
  22. Kim Y, Park M, Nam DJ, Yang EH, Ryoo JH. Relationship between seafood consumption and bisphenol A exposure: the Second Korean National Environmental Health Survey (KoNEHS 2012-2014). Ann Occup Environ Med 2020;32(1):e10.
  23. Jia PP, Ma YB, Lu CJ, Mirza Z, Zhang W, Jia YF, et al. The effects of disturbance on Hypothalamus-Pituitary-Thyroid (HPT) axis in zebrafish larvae after exposure to DEHP. PLoS One 2016;11(5):e0155762.
  24. Shelby MD. NTP-CERHR monograph on the potential human reproductive and developmental effects of di (2-ethylhexyl) phthalate (DEHP). NTP CERHR MON 2006;(18):v, vii-7, II-iii-xiii passim.
  25. Xie X, Deng T, Duan J, Ding S, Yuan J, Chen M. Comparing the effects of diethylhexyl phthalate and dibutyl phthalate exposure on hypertension in mice. Ecotoxicol Environ Saf 2019;174:75-82.
  26. North ML, Takaro TK, Diamond ML, Ellis AK. Effects of phthalates on the development and expression of allergic disease and asthma. Ann Allergy Asthma Immunol 2014;112(6):496-502.
  27. Chen Y, Li C, Song P, Yan B, Yang X, Wu Y, et al. Hepatic and renal tissue damage in Balb/c mice exposed to diisodecyl phthalate: the role of oxidative stress pathways. Food Chem Toxicol 2019;132:110600.
  28. Qin W, Deng T, Cui H, Zhang Q, Liu X, Yang X, et al. Exposure to diisodecyl phthalate exacerbated Th2 and Th17-mediated asthma through aggravating oxidative stress and the activation of p38 MAPK. Food Chem Toxicol 2018;114:78-87.
  29. Shen S, Li J, You H, Wu Z, Wu Y, Zhao Y, et al. Oral exposure to diisodecyl phthalate aggravates allergic dermatitis by oxidative stress and enhancement of thymic stromal lymphopoietin. Food Chem Toxicol 2017;99:60-9.
  30. Koike E, Yanagisawa R, Sadakane K, Inoue K, Ichinose T, Takano H. Effects of diisononyl phthalate on atopic dermatitis in vivo and immunologic responses in vitro. Environ Health Perspect 2010;118(4):472-8.
  31. Ma P, Yan B, Zeng Q, Liu X, Wu Y, Jiao M, et al. Oral exposure of Kunming mice to diisononyl phthalate induces hepatic and renal tissue injury through the accumulation of ROS. Protective effect of melatonin. Food Chem Toxicol 2014;68:247-56.
  32. Han Z, Xue J, Li Y. Phthalate's multiple hormonal effects and their supplementary dietary regulation scheme of health risks for children. Environ Sci Pollut Res Int 2022;29(19):29016-32.
  33. Tsai CK, Cheng HH, Hsu TY, Wang JY, Hung CH, Tsai CC, et al. Prenatal exposure to di-ethyl phthalate (DEP) is related to increasing neonatal IgE levels and the altering of the immune polarization of helper-T cells. Int J Environ Res Public Health 2021;18(12):6364.
  34. Munoz-Ortuno M, Moliner-Martinez Y, Cogollos-Costa S, Herraez-Hernandez R, Campins-Falco P. A miniaturized method for estimating di(2-ethylhexyl) phthalate in bivalves as bioindicators. J Chromatogr A 2012;1260:169-73.
  35. Puy-Azurmendi E, Ortiz-Zarragoitia M, Kuster M, Martinez E, Guillamon M, Dominguez C, et al. An integrated study of endocrine disruptors in sediments and reproduction-related parameters in bivalve molluscs from the Biosphere's Reserve of Urdaibai (Bay of Biscay). Mar Environ Res 2010;69 Suppl:S63-6.
  36. Danopoulos E, Jenner LC, Twiddy M, Rotchell JM. Microplastic contamination of seafood intended for human consumption: a systematic review and meta-analysis. Environ Health Perspect 2020;128(12):126002.
  37. Akoueson F, Sheldon LM, Danopoulos E, Morris S, Hotten J, Chapman E, et al. A preliminary analysis of microplastics in edible versus non-edible tissues from seafood samples. Environ Pollut 2020;263(Pt A):114452.
  38. Ivleva NP, Wiesheu AC, Niessner R. Microplastic in aquatic ecosystems. Angew Chem Int Ed Engl 2017;56(7):1720-39.
  39. Pironti C, Ricciardi M, Motta O, Miele Y, Proto A, Montano L. Microplastics in the environment: intake through the food web, human exposure and toxicological effects. Toxics 2021;9(9):224.
  40. Andrady AL. Microplastics in the marine environment. Mar Pollut Bull 2011;62(8):1596-605.
  41. Sharma S, Chatterjee S. Microplastic pollution, a threat to marine ecosystem and human health: a short review. Environ Sci Pollut Res Int 2017;24(27):21530-47.
  42. Dawson AL, Santana MF, Miller ME, Kroon FJ. Relevance and reliability of evidence for microplastic contamination in seafood: a critical review using Australian consumption patterns as a case study. Environ Pollut 2021;276:116684.
  43. Smith M, Love DC, Rochman CM, Neff RA. Microplastics in seafood and the implications for human health. Curr Environ Health Rep 2018;5(3):375-86.
  44. Van Cauwenberghe L, Janssen CR. Microplastics in bivalves cultured for human consumption. Environ Pollut 2014;193:65-70.
  45. Dwiyitno , Dsikowitzky L, Nordhaus I, Andarwulan N, Irianto HE, Lioe HN, et al. Accumulation patterns of lipophilic organic contaminants in surface sediments and in economic important mussel and fish species from Jakarta Bay, Indonesia. Mar Pollut Bull 2016;110(2):767-77.
  46. Vered G, Kaplan A, Avisar D, Shenkar N. Using solitary ascidians to assess microplastic and phthalate plasticizers pollution among marine biota: a case study of the Eastern Mediterranean and Red Sea. Mar Pollut Bull 2019;138:618-25.
  47. Liu Y, Li Z, Jalon-Rojas I, Wang XH, Fredj E, Zhang D, et al. Assessing the potential risk and relationship between microplastics and phthalates in surface seawater of a heavily human-impacted metropolitan bay in northern China. Ecotoxicol Environ Saf 2020;204:111067.
  48. Im JY, Lee JW, Lee DJ, Lee SM, Gil GI. Current status and impact of microplastics in Korea. Water Future 2019;52(9):17-22.
  49. Gao B, Wang P, Zhou H, Zhang Z, Wu F, Jin J, et al. Sorption of phthalic acid esters in two kinds of landfill leachates by the carbonaceous sorbents. Bioresour Technol 2013;136:295-301.
  50. Ghaffar A, Ghosh S, Li F, Dong X, Zhang D, Wu M, et al. Effect of biochar aging on surface characteristics and adsorption behavior of dialkyl phthalates. Environ Pollut 2015;206:502-9.
  51. Rios LM, Jones PR, Moore C, Narayan UV. Quantitation of persistent organic pollutants adsorbed on plastic debris from the Northern Pacific Gyre's "eastern garbage patch". J Environ Monit 2010;12(12):2226-36.
  52. Liu FF, Liu GZ, Zhu ZL, Wang SC, Zhao FF. Interactions between microplastics and phthalate esters as affected by microplastics characteristics and solution chemistry. Chemosphere 2019;214:688-94.
  53. Rios-Fuster B, Alomar C, Paniagua Gonzalez G, Garcinuno Martinez RM, Soliz Rojas DL, Fernandez Hernando P, et al. Assessing microplastic ingestion and occurrence of bisphenols and phthalates in bivalves, fish and holothurians from a Mediterranean marine protected area. Environ Res 2022;214(Pt 3):114034.
  54. Environmental Protection Agency (EPA). Phthalates Action Plan. Washington, D.C., USA: Environmental Protection Agency; 2012.