DOI QR코드

DOI QR Code

Dynamics of pre-shift and post-shift lung function parameters among wood workers in Ghana

  • John Ekman (School of Medical Sciences, Faculty of Medicine and Health, Orebro University) ;
  • Philip Quartey (Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast) ;
  • Abdala Mumuni Ussif (Department of Forensic Sciences, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast) ;
  • Niklas Ricklund (Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Orebro University) ;
  • Daniel Lawer Egbenya (Department of Physiology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast) ;
  • Gideon Akuamoah Wiafe (Department of Physiology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast) ;
  • Korantema Mawuena Tsegah (Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast) ;
  • Akua Karikari (Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast) ;
  • Hakan Lofstedt (Department of Occupational and Environmental Medicine, Faculty of Medicine and Health, Orebro University) ;
  • Francis Tanam Djankpa (Department of Physiology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast)
  • 투고 : 2022.05.09
  • 심사 : 2023.08.14
  • 발행 : 2023.12.31

초록

Background: Diseases affecting the lungs and airways contribute significantly to the global burden of disease. The problem in low- and middle-income countries appears to be exacerbated by a shift in global manufacturing base to these countries and inadequate enforcement of environmental and safety standards. In Ghana, the potential adverse effects on respiratory function associated with occupational wood dust exposure have not been thoroughly investigated. Methods: Sixty-four male sawmill workers and 64 non-woodworkers participated in this study. The concentration of wood dust exposure, prevalence and likelihood of association of respiratory symptoms with wood dust exposure and changes in pulmonary function test (PFT) parameters in association with wood dust exposure were determined from dust concentration measurements, symptoms questionnaire and lung function test parameters. Results: Sawmill workers were exposed to inhalable dust concentration of 3.09 ± 0.04 mg/m3 but did not use respirators and engaged in personal grooming habits that are known to increase dust inhalation. The sawmill operators also showed higher prevalence and likelihoods of association with respiratory symptoms, a significant cross-shift decline in some PFT parameters and a shift towards a restrictive pattern of lung dysfunction by end of daily shift. The before-shift PFT parameters of woodworkers were comparable to those of non-woodworkers, indicating a lack of chronic effects of wood dust exposure. Conclusions: Wood dust exposure at the study site was associated with acute respiratory symptoms and acute changes in some PFT parameters. This calls for institution and enforcement of workplace and environmental safety policies to minimise exposure at sawmill operating sites, and ultimately, decrease the burden of respiratory diseases.

키워드

과제정보

We wish to show gratitude to the executive members, owners and wood workers at Abura, Esuekyir, Kakumdo sawmill companies and control persons at University of Cape Coast for participating in the project. We also thank Statistician Ing-Liss Bryngelsson for excellent help with the data processing.

참고문헌

  1. GBD 2019 Diseases and Injuries Collaborators. Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020;396(10258):1204-22.
  2. Global Asthma Network. The global asthma report. http://www.globalasthmareport.org/. Updated 2018. Accessed October 16, 2020.
  3. Ferkol T, Schraufnagel D. The global burden of respiratory disease. Ann Am Thorac Soc 2014;11(3):404-6.
  4. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 2006;3(11):e442-442.
  5. de-Graft Aikins A, Unwin N, Agyemang C, Allotey P, Campbell C, Arhinful D. Tackling Africa's chronic disease burden: from the local to the global. Global Health 2010;6(1):5.
  6. Schluger NW, Koppaka R. Lung disease in a global context. A call for public health action. Ann Am Thorac Soc 2014;11(3):407-16.
  7. Eyiah AK, Kheni NA, Quartey PD. An assessment of occupational health and safety regulations in Ghana: a study of the construction industry. J Build Constr Plan Res 2019;07(02):11-31.
  8. IARC Working Group on Evaluation of Carcinogenic Risks to Humans. Wood Dust and Formaldehyde. Vol. 62. Lyon, France: International Agency for Research on Cancer; 1995.
  9. Yeboah D, Burton AJ, Storer AJ, Opuni-Frimpong E. Variation in wood density and carbon content of tropical plantation tree species from Ghana. New For 2014;45(1):35-52.
  10. Black N, Dilworth M, Summers N. Occupational exposure to wood dust in the British woodworking industry in 1999/2000. Ann Occup Hyg 2007;51(3):249-60.
  11. Asamoah O, Kuittinen S, Abrefa Danquah J, Quartey ET, Bamwesigye D, Mario Boateng C, et al. Assessing wood waste by timber industry as a contributing factor to deforestation in Ghana. Forests 2020;11(9):939.
  12. Quansah F, Tandoh-Offin P. Determinants of performance in the wood industry in Ghana: an overview. Bus Econ Rev 2017;7(2):55.
  13. Dunga JA, Alkali NH, Adamu YM, Bathna S, Suleiman Y, Ukoli C, et al. FEV1, FVC, FEV1 /FVVC as predictors of rhinitis among saw mill workers in north central Nigeria. Niger J Med 2016;25(2):152-8.
  14. Hussain S, Mahmood N, Karadaky K, Ali A, Mohammad G, Mahmood O. Respiratory function among sawmill workers in different areas of Sulaimani city. Int J Med Sci Public Health 2016;5(2):351-5.
  15. Neghab M, Jabari Z, Kargar Shouroki F. Functional disorders of the lung and symptoms of respiratory disease associated with occupational inhalation exposure to wood dust in Iran. Epidemiol Health 2018;40:e2018031.
  16. Okwari OO, Antai AB, Owu DU, Peters EJ, Osim EE. Lung function status of workers exposed to wood dust in timber markets in Calabar, Nigeria. Afr J Med Med Sci 2005;34(2):141-5.
  17. Omole JO, Fabunmi AA, Akosile CO. Respiratory function of sawmill workers and their relationship to exposure time to wood dust seen in Nigeria. J Environ Occup Sci 2018;7(1):9-16.
  18. Tobin EA, Ediagbonya TF, Okojie OH, Asogun DA. Occupational exposure to wood dust and respiratory health status of sawmill workers in South-South Nigeria. J Pollut Eff Control 2015;4(1):4-9.
  19. Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A, et al. Standardisation of spirometry. Eur Respir J 2005;26(2):319-38.
  20. Haynes JM. Basic spirometry testing and interpretation for the primary care provider. Can J Respir Ther 2018;54(4).
  21. Moore VC. Spirometry: step by step. Breathe 2012;8:232-40.
  22. Talaminos Barroso A, Marquez Martin E, Roa Romero LM, Ortega Ruiz F. Factors affecting lung function: a review of the literature. Arch Bronconeumol (Engl Ed) 2018;54(6):327-32.
  23. Chung-Hall J, Craig L, Gravely S, Sansone N, Fong GT. Impact of the WHO FCTC over the first decade: a global evidence review prepared for the Impact Assessment Expert Group. Tob Control 2019;28(Suppl 2):s119-28.
  24. Owusu-Dabo E, Lewis S, McNeill A, Gilmore A, Britton J. Smoking uptake and prevalence in Ghana. Tob Control 2009;18(5):365-70.
  25. Ozturk AB, Damadoglu E, Karakaya G, Kalyoncu AF. Does nasal hair (vibrissae) density affect the risk of developing asthma in patients with seasonal rhinitis? Int Arch Allergy Immunol 2011;156(1):75-80.
  26. Stoddard DG Jr, Pallanch JF, Hamilton GS. The effect of vibrissae on subjective and objective measures of nasal obstruction. Am J Rhinol Allergy 2015;29(5):373-7.
  27. Schlunssen V, Schaumburg I, Andersen NT, Sigsgaard T, Pedersen OF. Nasal patency is related to dust exposure in woodworkers. Occup Environ Med 2002;59(1):23-9.
  28. The National Institute for Occupational Safety and Health (US). Wood dust. https://www.cdc.gov/niosh/pel88/wooddust.html.Updated 2011. Accessed January 11, 2021.
  29. Khan RK, Strand MA. Road dust and its effect on human health: a literature review. Epidemiol Health 2018;40:e2018013.
  30. Habybabady RH, Sis HN, Paridokht F, Ramrudinasab F, Behmadi A, Khosravi B, et al. Effects of dust exposure on the respiratory health symptoms and pulmonary functions of street sweepers. Malays J Med Sci 2018;25(6):76-84.
  31. Osman E, Pala K. Occupational exposure to wood dust and health effects on the respiratory system in a minor industrial estate in Bursa, Turkey. Int J Occup Med Environ Health 2009;22(1):43-50.
  32. Milanowski J, Gora A, Skorska C, Krysinska-Traczyk E, Mackiewicz B, Sitkowska J, et al. Work-related symptoms among furniture factory workers in Lublin region (eastern Poland). Ann Agric Environ Med 2002;9(1):99-103.
  33. Ige OM, Onadeko OB. Respiratory symptoms and ventilatory function of the sawmillers in Ibadan, Nigeria. Afr J Med Med Sci 2000;29(2):101-4.
  34. K Hosseini D, Malekshahi Nejad V, Sun H, K Hosseini H, Adeli SH, Wang T. Prevalence of respiratory symptoms and spirometric changes among non-smoker male wood workers. PLoS One 2020;15(3):e0224860.
  35. Borm PJA, Jetten M, Hidayat S, van de Burgh N, Leunissen P, Kant I, et al. Respiratory symptoms, lung function, and nasal cellularity in Indonesian wood workers: a dose-response analysis. Occup Environ Med 2002;59(5):338-44.
  36. Bohadana AB, Massin N, Wild P, Toamain JP, Engel S, Goutet P. Symptoms, airway responsiveness, and exposure to dust in beech and oak wood workers. Occup Environ Med 2000;57(4):268-73.
  37. Bislimovska D, Petrovska S, Minov J. Respiratory symptoms and lung function in never-smoking male workers exposed to hardwood dust. Open Access Maced J Med Sci 2015;3(3):500-5.
  38. Alonso-Sardon M, Chamorro AJ, Hernandez-Garcia I, Iglesias-de-Sena H, Martin-Rodero H, Herrera C, et al. Association between occupational exposure to wood dust and cancer: a systematic review and meta-analysis. PLoS One 2015;10(7):e0133024.
  39. Basomba A, Burches E, Almodovar A, de Rojas DH. Occupational rhinitis and asthma caused by inhalation of Balfourodendron riedelianum (Pau Marfim) wood dust. Allergy 1991;46(4):316-8.
  40. Booth BH, LeFoldt RH, Moffitt EM. Wood dust hypersensitivity. J Allergy Clin Immunol 1976;57(4):352-7.
  41. Correale CE, Marks JG Jr. Contact dermatitis in a woodworker. Am J Contact Dermat 2002;13(1):42-4.
  42. Sripaiboonkij P, Phanprasit W, Jaakkola MS. Respiratory and skin effects of exposure to wood dust from the rubber tree Hevea brasiliensis. Occup Environ Med 2009;66(7):442-7.
  43. Wilhelmsson B, Jernudd Y, Ripe E, Holmberg K. Nasal hypersensitivity in wood furniture workers. An allergological and immunological investigation with special reference to mould and wood. Allergy 1984;39(8):586-95.
  44. Wilhelmsson B, Jernudd Y, Ripe E, Holmberg K. Nasal hypersensitivity in wood furniture workers. Rhinology 1985;23(4):297-302.
  45. Wilhelmsson B, Lundh B, Drettner B, Stenkvist B. Effects of wood dust exposure and diethylnitrosamine. A pilot study in Syrian golden hamsters. Acta Otolaryngol 1985;99(1-2):160-71.
  46. Wilhelmsson B, Hellquist H, Olofsson J, Klintenberg C. Nasal cuboidal metaplasia with dysplasia. Precursor to adenocarcinoma in wood-dust-exposed workers? Acta Otolaryngol 1985;99(5-6):641-8.
  47. Cormier Y, Merlaux A, Duchaine C. Respiratory health impact of working in sawmills in eastern Canada. Arch Environ Health 2000;55(6):424-30.
  48. Rastogi SK, Gupta BN, Husain T, Mathur N. Respiratory health effects from occupational exposure to wood dust in sawmills. Am Ind Hyg Assoc J 1989;50(11):574-8.
  49. Bhattacharjee JW, Zaidi SH. In vitro and in vivo studies of organic dusts. Ann Occup Hyg 1982;26(1-4):635-44.
  50. Bhattacharjee JW, Dogra RK, Lal MM, Zaidi SH. Wood dust toxicity: in vivo and in vitro studies. Environ Res 1979;20(2):455-64.
  51. Maatta J, Lehto M, Leino M, Tillander S, Haapakoski R, Majuri ML, et al. Mechanisms of particle-induced pulmonary inflammation in a mouse model: exposure to wood dust. Toxicol Sci 2006;93(1):96-104.
  52. Vallieres E, Pintos J, Parent ME, Siemiatycki J. Occupational exposure to wood dust and risk of lung cancer in two population-based case-control studies in Montreal, Canada. Environ Health 2015;14(1):1.
  53. Lai PS, Christiani DC. Long-term respiratory health effects in textile workers. Curr Opin Pulm Med 2013;19(2):152-7.
  54. Mandryk J, Alwis KU, Hocking AD. Effects of personal exposures on pulmonary function and work-related symptoms among sawmill workers. Ann Occup Hyg 2000;44(4):281-9.
  55. Maciejewska A, Wojtczak J, Bielichowska-Cybula G, Domanska A, Dutkiewicz J, Molocznik A. Biological effect of wood dust. Med Pr 1993;44(3):277-88.