Acknowledgement
This study is supported by National Key R&D Program of China (2021YFC3100702), National Natural Science Foundation of China (52108451), Shenzhen Science and Technology Program (SGDX20210823103202018), Shenzhen Science and Technology Innovation Commission (GXWD20201230155427003-20200823230021001), Shenzhen Science and Technology Program (KQTD20210811090112003), and Guangdong-Hong KongMacao Joint Laboratory for Data-Driven Fluid Mechanics and Engineering Applications (2020B1212030001). The authors highly appreciate the aerodynamic database of Tokyo Polytechnic University.
References
- Bao, Y. and Li, H. (2020), "Machine learning paradigm for structural health monitoring", J. Civil Struct. Health Monit., 20, 1353-1372. https://doi.org/10.1177/1475921720972416.
- Bengio, Y., Simard, P. and Frasconi, P. (1994), "Learning long-term dependencies with gradient descent is difficult", IEEE Transact. Neural Netw., 5, 157-166. https://doi.org/10.1109/72.279181.
- Bruna, J., Sprechmann, P. and LeCun, Y. (2016), "Super-resolution with deep convolutional sufficient statistics", The 4th International Conference on Learning Representations, San Juan, May. https://doi.org/10.48550/arXiv.1511.05666.
- Cao, S., Wang, J., Cao, J., Zhao, L. and Chen, X. (2015), "Experimental study of wind pressures acting on a cooling tower exposed to stationary tornado-like vortices", J. Wind Eng. Indust. Aerodyn., 145, 75-86. https://doi.org/10.1016/j.jweia.2015.06.004.
- Chen, Y., Kopp, G.A. and Surry, D. (2003), "Prediction of pressure coefficients on roofs of low buildings using artificial neural networks", J. Wind Eng. Indust. Aerodyn., 91, 423-441. https://doi.org/10.1016/S0167-6105(02)00381-1.
- Cheng, L., Lam, K. and Wong, S. (2015), "Pod analysis of crosswind forces on a tall building with square and h-shaped cross-sections", Wind Struct. Int. J., 21, 63-84. http://dx.doi.org/10.12989/was.2015.21.1.063.
- Deng, Z., He, C., Liu, Y. and Kim, K.C. (2019), "Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework", Phys. Fluid., 31, 125111. https://doi.org/10.1063/1.5127031.
- Dong, C., Loy, C.C., He, K. and Tang, X. (2016a), "Image super-resolution using deep convolutional networks", IEEE Transact. Pattern Anal. Mach. Intell., 38, 295-307. https://doi.org/10.1109/TPAMI.2015.2439281.
- Dong, C., Loy, C.C. and Tang, X. (2016b), "Accelerating the super-resolution convolutional neural network", Lecture Notes Comput. Sci., 9906, 391-407. https://doi.org/10.1007/978-3-319-46475-6_25.
- Diez, A., Khoa, N.L.D., Alamdari, M.M., Wang, Y., Chen, F. and Runcie, P. (2016), "A clustering approach for structural health monitoring on bridges", J. Wind Eng. Indust. Aerodyn., 6, 429-445. https://doi.org/10.1007/s13349-016-0160-0.
- Duthinh, D., Main, J.A., Gierson, M.L. and Phillips, B.M. (2018), "Analysis of wind pressure data on components and cladding of low-rise buildings", ASCE-ASME J. Risk Uncertain. Eng. Syst., Part A: Civil Eng., 4(1), 04017032. https://doi.org/10.1061/AJRUA6.0000936.
- Feng, R., Gu, J., Qiao, Y. and Dong, C. (2019), "Suppressing model overfitting for image super-resolution networks", IEEE Comput. Soc. Conf. Comput. Vision Pattern Recog. Workshops, 1964-1973.
- Feng, R. qiang, Zhu, B. and Wang, X. (2015), "A mode contribution ratio method for seismic analysis of large-span spatial structures", Int. J. Steel Struct., 15, 835-852. https://doi.org/10.1007/s13296-015-1206-6.
- Fu, J.Y., Liang, S.G. and Li, Q.S. (2007), "Prediction of wind-induced pressures on a large gymnasium roof using artificial neural networks", Comput. Struct., 85, 179-192. https://doi.org/10.1016/j.compstruc.2006.08.070.
- Fukami, K., Nabae, Y., Kawai, K. and Fukagata, K. (2019), "Synthetic turbulent inflow generator using machine learning", Phys. Rev. Fluids, 4, 064603. https://doi.org/10.1103/PhysRevFluids.4.064603.
- Glorot, X. and Bengio, Y. (2010), "Understanding the difficulty of training deep feedforward neural networks", J. Mach. Learn. Res., 249-256.
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., WardeFarley, D., Ozair, S., Courville, A. and Bengio, Y. (2014), "Generative adversarial networks", Communication. ACM, 63(11), 139-144. https://doi.org/10.1145/3422622.
- Han, D. (2013), "Comparison of commonly used image interpolation methods", The 2nd International Conference on Computer Science and Electronics Engineering (ICCSEE 2013), Hangzhou, March.
- Harris, J.L. (1964), "Diffraction and resolving power", J. Optic. Soc. America, 54(7), 931-936. https://doi.org/10.1364/JOSA.54.000931.
- He, K., Zhang, X., Ren, S. and Sun, J. (2016), "Deep residual learning for image recognition", IEEE Comput. Soc. Conf. Comput. Vision Pattern Recog., 770-778.
- Hu, G. and Kwok, K.C.S. (2020), "Predicting wind pressures around circular cylinders using machine learning techniques", J. Wind Eng. Indust. Aerodyn., 198, 104099. https://doi.org/10.1016/j.jweia.2020.104099.
- Hu, G., Liu, L., Tao, D., Song, J., Tse, K.T. and Kwok, K.C.S. (2020), "Deep learning-based investigation of wind pressures on tall building under interference effects", J. Wind Eng. Indust. Aerodyn., 201, 104138. https://doi.org/10.1016/j.jweia.2020.104138.
- Huang, D., He, S., He, X. and Zhu, X. (2017), "Prediction of wind loads on high-rise building using a BP neural network combined with POD", J. Wind Eng. Indust. Aerodyn., 170, 1-17. https://doi.org/10.1016/j.jweia.2017.07.021.
- Isola, P., Zhu, J.Y., Zhou, T. and Efros, A.A. (2017), "Image-to-image translation with conditional adversarial networks", The 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, July.
- Jin, X., Laima, S., Chen, W.L. and Li, H. (2020), "Time-resolved reconstruction of flow field around a circular cylinder by recurrent neural networks based on non-time-resolved particle image velocimetry measurements", Exp. Fluids, 61, 114. https://doi.org/10.1007/s00348-020-2928-6.
- Karras, T., Laine, S. and Aila, T. (2018), "A style-based generator architecture for generative adversarial networks", IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, June.
- Ke, S.T., Ge, Y.J., Zhao, L. and Tamura, Y. (2012)m "A new methodology for analysis of equivalent static wind loads on super-large cooling towers", J. Wind Eng. Indust. Aerodyn., 111, 30-39. https://doi.org/10.1016/j.jweia.2012.08.001.
- Kim, B., Yuvaraj, N., Sri Preethaa, K.R., Hu, G. and Lee, D.E. (2021a), "Wind-induced pressure prediction on tall buildings using generative adversarial imputation network", Sensors, 21(7), 2515. https://doi.org/10.3390/s21072515.
- Kim, B., Yuvaraj, N., Tse, K.T., Lee, D. and Hu, G. (2021b), "Pressure pattern recognition in buildings using an unsupervised machine-learning algorithm", J. Wind Eng. Indust. Aerodyn., 214, 104629. https://doi.org/10.1016/j.jweia.2021.104629.
- Kim, H., Kim, J., Won, S. and Lee, C. (2021), "Unsupervised deep learning for super-resolution reconstruction of turbulence", J. Fluid Mech., 910, A29. https://doi.org/10.1017/jfm.2020.1028.
- Kim, J. and Lee, C. (2020), "Deep unsupervised learning of turbulence for inflow generation at various Reynolds numbers", J. Comput. Phys., 406, 109216. https://doi.org/10.1016/j.jcp.2019.109216.
- Kim, S.P., Bose, N.K. and Valenzuela, H.M. (1990), "Recursive reconstruction of high resolution image from noisy undersampled multiframes", IEEE Transact. Acous. Speech Sign. Processing, 38(6), 1013-1027. https://doi.org/10.1109/29.56062.
- Kim, S. Y., Oh, J. and Kim, M. (2019), "Deep SR-ITM: Joint learning of super-resolution and inverse tone-mapping for 4K UHD HRR applications", IEEE/CVF International Conference on Computer Vision, Seoul, October-November.
- Kingma, D.P. and Ba, J.L. (2015), "Adam: A method for stochastic optimization", The 3rd International Conference on Learning Representations, San Diego, CA, May. https://doi.org/10.48550/arXiv.1412.6980.
- Koza, J.R., Bennett, F.H., Andre, D. and Keane, M.A. (1996), "Automated design of both the topology and sizing of analog electrical circuits using genetic programming", Artif. Intell. Des., 96, 151-170. https://doi.org/10.1007/978-94-009-0279-4_9.
- Lai, W.S., Huang, J. Bin, Ahuja, N. and Yang, M.H. (2017), "Deep laplacian pyramid networks for fast and accurate super-resolution, The 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, July.
- Ledig, C., Theis, L., Huszar, F., Caballero, J., Cunningham, A., Acosta, A., Aitken, A., Tejani, A., Totz, J., Wang, Z. and Shi, W. (2017), "Photo-realistic single image super-resolution using a generative adversarial network", The 30th IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, July.
- Lee, Y.J., Hall, D., Liu, Q., Liao, W.W. and Huang, M.C. (2021), "Interpretable tropical cyclone intensity estimation using Dvorak-inspired machine learning techniques", Eng. Appl. Artif. Intell., 101, 104233. https://doi.org/10.1016/j.engappai.2021.104233.
- Letchford, C.W. and Scott Norville, H. (1994), "Wind pressure loading cycles for wall cladding during hurricanes", J. Wind Eng. Indust. Aerodyn., 53, 189-206. https://doi.org/10.1016/0167-6105(94)90026-4.
- Li, S., Laima, S. and Li, H. (2018), "Data-driven modeling of vortex-induced vibration of a long-span suspension bridge using decision tree learning and support vector regression", J. Wind Eng. Indust. Aerodyn., 172, 196-211. https://doi.org/10.1016/j.jweia.2017.10.022.
- Li, W., Laima, S., Jin, X., Yuan, W. and Li, H. (2020), "A novel long short-term memory neural-network-based self-excited force model of limit cycle oscillations of nonlinear flutter for various aerodynamic configurations", Nonlinear Dyn., 100, 2071-2087. https://doi.org/10.1007/s11071-020-05631-5.
- Li, D., Liu, B. and Cheng, Y. (2020a), "Wind pressure coefficients zoning method based on an unsupervised learning algorithm", Math. Probl. Eng., 2020, 1670128. https://doi.org/10.1155/2020/1670128.
- Liao, H., Mei, H., Hu, G., Wu, B. and Wang, Q. (2021), "Machine learning strategy for predicting flutter performance of streamlined box girders", J. Wind Eng. Indust. Aerodyn., 209, 104493. https://doi.org/10.1016/j.jweia.2020.104493.
- Lin, P., Hu, G., Li, C., Li, L., Xiao, Y., Tse, K.T. and Kwok, K.C.S. (2021), "Machine learning-based prediction of crosswind vibrations of rectangular cylinders", J. Wind Eng. Indust. Aerodyn., 211, 104549. https://doi.org/10.1016/j.jweia.2021.104549.
- Lin, P., Ding, F., Hu, G., Li, C., Xiao, Y., Tse, K.T., Kwok, K.C.S. and Kareem, A. (2022), "Machine learning-enabled estimation of crosswind load effect on tall buildings", J. Wind Eng. Indust. Aerodyn., 220, 104860. https://doi.org/10.1016/j.jweia.2021.104860.
- Liu, B., Tang, J., Huang, H. and Lu, X.Y. (2020), "Deep learning methods for super-resolution reconstruction of turbulent flows", Phys. Fluid., 32, 025105. https://doi.org/10.1063/1.5140772.
- Liu, M., Li, Q.S., Huang, S.H., Shi, F. and Chen, F. (2018), "Evaluation of wind effects on a large span retractable roof stadium by wind tunnel experiment and numerical simulation", J. Wind Eng. Indust. Aerodyn., 179, 39-57. https://doi.org/10.1016/j.jweia.2018.05.014.
- Liu, Z. and Ishihara, T. (2015), "A study of tornado induced mean aerodynamic forces on a gable-roofed building by the large eddy simulations", J. Wind Eng. Indust. Aerodyn., 146, 39-50. https://doi.org/10.1016/j.jweia.2015.08.002.
- Noh, J., Bae, W., Lee, W., Seo, J. and Kim, G. (2019), "Better to follow, follow to be better: Towards precise supervision of feature super-resolution for small object detection", IEEE International Conference on Computer Vision, Seoul, October-November.
- Quan, Y., Tamura, Y. and Matsui, M. (2007), "Mean wind pressure coefficients on surfaces of gable-roofed low-rise buildings", Adv. Struct. Eng., 10(3), 259-271. https://doi.org/10.1260/1369433077814222.
- Radford, A., Metz, L. and Chintala, S. (2016), "Unsupervised representation learning with deep convolutional generative adversarial networks", The 4th International Conference on Learning Representations, San Juan, May. https://doi.org/10.48550/arXiv.1511.06434.
- Schraudolph, N.N. (1998), Accelerated Gradient Descent by Factor-Centering Decomposition.
- Seiler, M.C. and Seiler, F.A. (1989), "Numerical recipes in C: the art of scientific computing", Risk Anal., 9, 415-416. https://doi.org/10.1111/j.1539-6924.1989.tb01007.x.
- Shi, W., Caballero, J., Huszar, F., Totz, J., Aitken, A.P., Bishop, R., Rueckert, D. and Wang, Z. (2016), "Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, June-July.
- Silva, M., Santos, A., Santos, R., Figueiredo, E., Sales, C. and Costa, J.C. (2017), "Agglomerative concentric hypersphere clustering applied to structural damage detection", Mech. Syst. Signal Processing, 92, 196-212. https://doi.org/10.1016/j.ymssp.2017.01.024.
- Sohn, H., Kim, S.D. and Harries, K. (2008), "Reference-free damage classification based on cluster analysis", Comput.-Aided Civil Infrastruct. Eng., 23(5), 324-338. https://doi.org/10.1111/j.1467-8667.2008.00541.x.
- Srivastava, R.K., Greff, K. and Schmidhuber, J. (2015), "Training very deep networks", The 28th International Conference on Neural Information Processing Systems, Montreal, December.
- Sun, J., Zheng, N.N., Tao, H. and Shum, H.Y. (2003), "Image hallucination with primal sketch priors", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Madison, WI, June.
- Tian, J., Gurley, K.R., Diaz, M.T., Fernandez-Caban, P.L., Masters, F.J. and Fang, R. (2020), "Low-rise gable roof buildings pressure prediction using deep neural networks", J. Wind Eng. Indust. Aerodyn., 196, 104026. https://doi.org/10.1016/j.jweia.2019.104026.
- Van Ouwerkerk, J.D. (2006), "Image super-resolution survey", Image Vision Comput., 24(10), 1039-1052. https://doi.org/10.1016/j.imavis.2006.02.026.
- Wang, H., Zhang, Y.M., Mao, J.X. and Wan, H.P. (2020), "A probabilistic approach for short-term prediction of wind gust speed using ensemble learning", J. Wind Eng. Indust. Aerodyn., 202, 104198. https://doi.org/10.1016/j.jweia.2020.104198.
- Wang, Q., Yan, L., Hu, G., Li, C., Xiao, Y., Xiong, H., Rabault, J. and Noack, B.R. (2022), "DRLinFluids-an open-source Python platform of coupling deep reinforcement learning and OpenFOAM", Phys. Fluids, 34, 081801. https://doi.org/10.1063/5.0103113.
- Wang, Y., Huang, X., Yan, Y. and Zhen, Y. (2009), "A new method for motion-blurred image blind restoration based on huber Markov random field", The 5th International Conference on Image and Graphics, Beijing, January.
- Yang, J., Wright, J., Huang, T.S. and Ma, Y. (2010), "Image super-resolution via sparse representation", IEEE Transact. Image Processing, 19(11), 2861-2873. https://doi.org/10.1109/TIP.2010.2050625
- Yang, Z., Sarkar, P. and Hu, H. (2010), "Visualization of flow structures around a gable-roofed building model in tornado-like winds", J. Vis., 13, 285-288. https://doi.org/10.1007/s12650-010-0052-z.
- Yoo, J., Ahn, N. and Sohn, K.A. (2020), "Rethinking data augmentation for image super-resolution: A comprehensive analysis and a new strategy", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, June.
- Zhang, A., Lipton, Z., Li, M. and Smola, A. (2021), "Dive into deep learning", https://doi.org/10.48550/arXiv.2106.11342.
- Zhang, K., Van Gool, L. and Timofte, R. (2020), "Deep unfolding network for image super-resolution", IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Seattle, WA, June.
- Zhu, J.Y., Park, T., Isola, P. and Efros, A.A. (2017), "Unpaired image-to-image translation using cycle-consistent adversarial networks", IEEE International Conference on Computer Vision, Venice, October.
- Zhou, H.B. and Gao, J.T. (2014), "Automatic method for determining cluster number based on silhouette coefficient", Adv. Mater. Res,, 951, 227-230. https://doi.org/10.4028/www.scientific.net/amr.951.227.